Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ganoderma spores are one of the most airspora abundant taxa in many regions of the world, and are considered to be important allergens. The aerobiology of Ganoderma basidiospores in two cities in Poland was examined using the volumetric method, (Burkard and Lanzonii Spore Traps), from selected days in 2004, 2005 and 2006. Spores of Ganoderma were present in the atmosphere from June to November, with peak concentrations generally occurring from late July to mid-October. ANN (artificial neural network) and MRT (multivariate regression trees), models indicated that atmospheric phenomenon, hour and relative humidity were the most important variables influencing spore content. The remaining variables (air temperature, dew point, air pressure, wind speed and wind direction), also contributed to the high network performance, (ratio above 1), but their impact was less distinct. Those results are consistent with the Spearman's rank correlation analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2010.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!