Development and structure of drinking water biofilms and techniques for their study.

J Appl Microbiol

Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.

Published: December 1998

Drinking water systems are known to harbour biofilms, even though these environments are oligotrophic and often contain a disinfectant. Control of these biofilms is important for aesthetic and regulatory reasons. Study of full-scale systems has pointed to several factors controlling biofilm growth, but cause-and-effect relationships can only be established in controlled reactors. Using laboratory and pilot distribution systems, along with a variety of bacterial detection techniques, insights have been gained on the structure and behaviour of biofilms in these environments. Chlorinated biofilms differ in structure from non-chlorinated biofilms, but often the number of cells is similar. The number and level of cellular activity is dependent on the predominant carbon source. There is an interaction between carbon sources, the biofilm and the type of pipe material, which complicates the ability to predict biofilm growth. Humic substances, which are known to sorb to surfaces, appear to be a usable carbon source for biofilms. The finding offers an explanation for many of the puzzling observations in full scale and laboratory studies on oligotrophic biofilm growth. Pathogens can persist in these environments as well. Detection requires methods that do not require culturing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2672.1998.tb05277.xDOI Listing

Publication Analysis

Top Keywords

biofilm growth
12
drinking water
8
biofilms environments
8
carbon source
8
biofilms
7
development structure
4
structure drinking
4
water biofilms
4
biofilms techniques
4
techniques study
4

Similar Publications

Unlabelled: Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown.

View Article and Find Full Text PDF

Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.

View Article and Find Full Text PDF

The role of fluid friction in streamer formation and biofilm growth.

NPJ Biofilms Microbiomes

January 2025

FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.

Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.

View Article and Find Full Text PDF

Aims: To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry, - a "global high-risk" clonal strain.

Methods And Results: Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n=87) and healthy chicks (n=11) in Georgia, USA.

View Article and Find Full Text PDF

Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture.

Plant Signal Behav

December 2025

Laboratory of Research and Teaching in Animal Health and Biotechnology, Bobo-Dioulasso, Burkina Faso.

The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!