Extending classical molecular theory with polarization.

J Phys Chem B

Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.

Published: January 2011

A classical, polarizable, electrostatic theory of short-ranged atom-atom interactions, incorporating the smeared nature of atomic partial charges, is presented. Detailed models are constructed for CO monomer and for CO interacting with an iron atom, as a first step toward heme proteins. A good representation is obtained of the bond-length-dependent dipole of CO monomer from fitting at the equilibrium distance only. Essential features of the binding of CO to myoglobin (Mb) and model heme compounds, including the binding energy, the position of the minimum in the Fe-C potential, the Fe-C frequency, the bending energy, the linear geometry of FeCO, and the increase of the Stark tuning rate and IR intensity, are obtained, suggesting that a substantial part of the Fe-CO interaction consists of a classical, noncovalent, "electrostatic bond ". The binding energy is primarily polarization energy, and the polarization energy of an OH pair in water is shown to be comparable to the experimental hydrogen bond energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp105595qDOI Listing

Publication Analysis

Top Keywords

binding energy
8
energy polarization
8
polarization energy
8
energy
6
extending classical
4
classical molecular
4
molecular theory
4
theory polarization
4
polarization classical
4
classical polarizable
4

Similar Publications

6-Indolo-[2,3-]-quinoxaline derivatives as promising bifunctional SHP1 inhibitors.

Org Biomol Chem

January 2025

School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.

Dysfunction in the SHP1 enzyme can cause cancers and many diseases, so it is of great significance to develop novel small molecule SHP1 inhibitors. Through continuous monitoring of metabolic and targeted processes of SHP1 inhibitors in real-time, we can evaluate the effectiveness and toxicity of the inhibitors, further optimize drug design, and explore SHP1 biology. Indoloquinoxaline is an important class of N-containing heterocycle, which has been studied and applied in the pharmacological field and in optoelectronic materials.

View Article and Find Full Text PDF

A cystine-dense peptide (CDP) named TfRB1 was identified for its ability to bind to the transferrin receptor (TfR). CDPs are stabilized by their disulfide bonds, and variants of TfRB1 - specifically TfRB1G1, TfRB1G2, and TfRB1G3 - are explored for their potential to transport molecules across the blood-brain barrier (BBB) into the central nervous system (CNS). This study employed molecular modeling and dynamics simulations to characterize the interactions between these TfRB1 variants and TfR.

View Article and Find Full Text PDF

Multiple Topology Replica Exchange of Expanded Ensembles for Multidimensional Alchemical Calculations.

J Chem Theory Comput

January 2025

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States.

Relative free energy (RFE) calculations are now widely used in academia and the industry, but their accuracy is often limited by poor sampling of the complexes' conformational ensemble. To help address conformational sampling problems when simulating many relative binding free energies, we developed a novel method termed multiple topology replica exchange of expanded ensembles (MT-REXEE). This method enables parallel expanded ensemble calculations, facilitating iterative RFE computations while allowing conformational exchange between parallel transformations.

View Article and Find Full Text PDF

The resistance mechanism of B_P225F and B_H272R mutations in succinate dehydrogenase in Botrytis cinerea.

Int J Biol Macromol

December 2024

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China. Electronic address:

Botrytis cinerea populations resistant to succinate dehydrogenase inhibitors (SDHIs) represent a major problem for the sustainable development of modern agriculture. In the present study, the resistance mechanism of B_P225F and B_H272R mutations in B. cinerea SDH (BcSDH) resistant to SDHIs fungicides, including boscalid (BOS), penflufen (PEN), pydiflumetofen (PYD), fluopyram (FLU), and benzovindiflupyr (BEN), was uncovered.

View Article and Find Full Text PDF

Theoretical assessment of the adsorption mechanism of carvone enantiomers on cow btOR1A1: New microscopic interpretations.

Int J Biol Macromol

December 2024

Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.

In this study, the olfactory threshold concentration was introduced in the statistical physics approach to provide fruitful and deep discussions. Indeed, a modified mono-layer mono-energy model established using statistical physics theory was successfully used to theoretically study the adsorption involved in the olfactory response of (R)-(-)-carvone and (S)-(+)-carvone key food odorants (KFOs) on cow (Bos taurus) olfactory receptor btOR1A1 through the analysis of the different model physicochemical parameters. Thus, stereographic results indicated that the two carvone enantiomers were non-parallelly docked on btOR1A1 binding sites during the adsorption process since the different values of n were superior to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!