Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The self-assembly of a blue-emitting light-harvesting organogelator and specifically designed highly fluorescent tetracenes yields nanofibers with tunable emissive properties. In particular, under near-UV excitation, white light emission is achieved in organogels and dry films of nanofibers. Confocal fluorescence microspectroscopy demonstrates that each individual nanofiber emits white light. A kinetic study shows that an energy transfer (ET) occurs between the blue-emitting anthracene derivative and the green- and red-emitting tetracenes, while inter-tetracene ETs also take place. Moreover, microscopy unravels that the nanofibers emit polarized emission in the blue spectral region, while at wavelengths higher than 500 nm the emission is not significantly polarized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja106807u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!