Methylations of ethene, propene, and butene by methanol over the acidic microporous H-ZSM-5 catalyst are studied by means of state of the art computational techniques, to derive Arrhenius plots and rate constants from first principles that can directly be compared with the experimental data. For these key elementary reactions in the methanol to hydrocarbons (MTH) process, direct kinetic data became available only recently [J. Catal.2005, 224, 115-123; J. Catal.2005, 234, 385-400]. At 350 °C, apparent activation energies of 103, 69, and 45 kJ/mol and rate constants of 2.6 × 10(-4), 4.5 × 10(-3), and 1.3 × 10(-2) mol/(g h mbar) for ethene, propene, and butene were derived, giving following relative ratios for methylation k(ethene)/k(propene)/k(butene) = 1:17:50. In this work, rate constants including pre-exponential factors are calculated which give very good agreement with the experimental data: apparent activation energies of 94, 62, and 37 kJ/mol for ethene, propene, and butene are found, and relative ratios of methylation k(ethene)/k(propene)/k(butene) = 1:23:763. The entropies of gas phase alkenes are underestimated in the harmonic oscillator approximation due to the occurrence of internal rotations. These low vibrational modes were substituted by manually constructed partition functions. Overall, the absolute reaction rates can be calculated with near chemical accuracy, and qualitative trends are very well reproduced. In addition, the proposed scheme is computationally very efficient and constitutes significant progress in kinetic modeling of reactions in heterogeneous catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja1073992DOI Listing

Publication Analysis

Top Keywords

ethene propene
12
propene butene
12
rate constants
12
experimental data
8
apparent activation
8
activation energies
8
relative ratios
8
ratios methylation
8
methylation kethene/kpropene/kbutene
8
principle kinetic
4

Similar Publications

A tandem catalytic ensemble of solid-state molecular organometallic (SMOM) crystalline pre-catalysts are deployed under batch or flow conditions for the ethene to propene process (ETP). These catalysts operate at ambient temperature and low pressure, via sequential ethene dimerization, butenes isomerization and cross-metathesis. Under flow conditions the on-stream ethene conversion (55%), initial propene selectivity (92%), stability (71% selectivity after 7 hrs) and low temperature/pressures are competitive with the best-in-class heterogenous systems, marking a new, in crystallo, approach to ETP.

View Article and Find Full Text PDF

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Generating Beta Zeolite Nanosheets of Intergrown Polymorph B and C Using Polycationic Structure-Directing Agent.

Small

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Zeolitic nanosheets possess great potential in catalysis due to their enhanced transport property and accessibility toward bulky molecules compared to conventional micron- meter scale crystals. However, the generation of Beta zeolite nanosheets, which are crucial for industrial catalysis, is still challenging for its intergrowth nature. In this work, aluminosilicate Beta nanosheets of ca.

View Article and Find Full Text PDF

Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing.

Materials (Basel)

January 2025

Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.

Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).

View Article and Find Full Text PDF

Filamentous cyanobacteria growth assessment using fluorinated ethylene propylene microcapillaries.

MRS Bull

November 2024

Bioelectronics & Bioenergy Research Lab, Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

Abstract: Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle , due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!