Nanofilm biomaterials: localized cross-linking to optimize mechanical rigidity and bioactivity.

Langmuir

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States.

Published: February 2011

Nanofilm biomaterials, formed by the layer-by-layer assembly of charged macromolecules, are important systems for a variety of cell-contacting biomedical and biotechnological applications. Mechanical rigidity and bioactivity are two key film properties influencing the behavior of contacting cells. Increased rigidity tends to improve cells attachment, and films may be rendered bioactive through the incorporation of proteins, peptides, or drugs. A key challenge is to realize films that are simultaneously rigid and bioactive. Chemical cross-linking of the polymer framework--the standard means of increasing a film's rigidity--can diminish bioactivity through deactivation or isolation of embedded biomolecules or inhibition of film biodegradation. We present here a strategy to decouple mechanical rigidity and bioactivity, potentially enabling nanofilm biomaterials that are both mechanically rigid and bioactive. Our idea is to selectively cross-link the outer region of the film, resulting in a rigid outer skin to promote cell attachment, while leaving the film interior (with any embedded bioactive species) unaffected. We propose an approach whereby an N-hydroxysulfosuccinimide (sulfo-NHS) activated poly(L-glutamic acid) is added as the terminal layer of a multilayer film and forms (covalent) amide bonds with amino groups of poly(L-lysine) placed previously within the film. We characterize film assembly and cross-linking extent via quartz crystal microbalance with dissipation monitoring (QCMD), Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), and laser scanning confocal microscopy (LSCM) and measure the attachment and metabolic activity of preosteoblastic MC3T3-E1 cells. We show cross-linking to occur primarily at the film surface and the subsequent cell attachment and metabolic activity to be enhanced compared to native films. Our method appears promising as a means to realize films that are simultaneously mechanically rigid and bioactive.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la104156cDOI Listing

Publication Analysis

Top Keywords

nanofilm biomaterials
12
mechanical rigidity
12
rigidity bioactivity
12
rigid bioactive
12
film
8
realize films
8
films simultaneously
8
mechanically rigid
8
cell attachment
8
attachment metabolic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!