A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of green synthesized silver nanoparticles against parasites. | LitMetric

Evaluation of green synthesized silver nanoparticles against parasites.

Parasitol Res

Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C.Abdul Hakeem College, Melvisharam, 632 509, Vellore District, Tamil Nadu, India.

Published: June 2011

Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the antiparasitic activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Mimosa pudica Gaertn (Mimosaceae) against the larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae), and Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Parasite larvae were exposed to varying concentrations of aqueous extract of M. pudica and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of M. pudica and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus (LC(50) = 13.90, 11.73, and 8.98 mg/L, r (2) = 0.411, 0.286, and 0.479), respectively. This is the first report on antiparasitic activity of the plant extract and synthesized AgNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-010-2212-4DOI Listing

Publication Analysis

Top Keywords

synthesized agnps
12
synthesized silver
8
silver nanoparticles
8
plant extract
8
leaf extract
8
extract pudica
8
electron microscopy
8
synthesized
6
agnps
6
extract
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!