A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Comparison of simple and multiple imputation methods using a risk model for surgical mortality as example]. | LitMetric

[Comparison of simple and multiple imputation methods using a risk model for surgical mortality as example].

Rev Bras Epidemiol

Programa de Pós-Graduação em Epidemiologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Published: December 2010

Introduction: It is common for studies in health to face problems with missing data. Through imputation, complete data sets are built artificially and can be analyzed by traditional statistical analysis. The objective of this paper is to compare three types of imputation based on real data.

Methods: The data used came from a study on the development of risk models for surgical mortality. The sample size was 450 patients. The imputation methods applied were: two single imputations and one multiple imputation and the assumption was MAR (Missing at Random).

Results: The variable with missing data was serum albumin with 27.1% of missing rate. The logistic models adjusted by simple imputation were similar, but differed from models obtained by multiple imputation in relation to the inclusion of variables.

Conclusions: The results indicate that it is important to take into account the relationship of albumin to other variables observed, because different models were obtained in single and multiple imputations. Single imputation underestimates the variability generating narrower confidence intervals. It is important to consider the use of imputation methods when there is missing data, especially multiple imputation that takes into account the variability between imputations for estimates of the model.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s1415-790x2010000400005DOI Listing

Publication Analysis

Top Keywords

multiple imputation
16
imputation methods
12
missing data
12
imputation
10
surgical mortality
8
multiple
5
missing
5
data
5
[comparison simple
4
simple multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!