Purpose: Photoreceptor ribbon synapses translate light-dependent changes of membrane potential into graded transmitter release over several orders of magnitude in intensity. A specialized organelle at the active zone--the synaptic ribbon--is a key player in this process, and it is well known that the ribbon undergoes illumination and thus activity-dependent structural changes. However, the molecular basis for these changes is unknown. The aim of this study was to correlate the known ultrastructural ribbon changes to the distribution of proteins of the presynaptic ribbon complex.
Methods: In an in vitro assay, two distinct structural ribbon states--club-shaped and spherical-shaped--were enriched and the distribution of presynaptic proteins at the rod photoreceptor ribbon complex was analyzed with immunocytochemistry and light and electron microscopy.
Results: We show that structural changes of the ribbon correlate with the redistribution of selected presynaptic proteins. The disassembly of the ribbon complex seems to be a multistep process, which starts with the removal of spherical ribbon material while arciform density and active zone plasma membrane proteins remain largely unchanged at their synaptic location. Only later, in a second phase following the removal of ribbon material, the arciform density and plasma membrane proteins are redistributed from their synaptic localization and active zones disappear.
Conclusions: The results of our study show that photoreceptor ribbon and arciform density/plasma membrane components might be influenced differentially by activity-driven processes, thus providing a molecular basis for further investigation of regulatory and adaptive processes in photoreceptor ribbon synaptic transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002953 | PMC |
Cell Commun Signal
December 2024
Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China.
Synaptic ribbons, recognized for their pivotal role in conveying sensory signals in the visual pathway, are intricate assemblages of presynaptic proteins. Complexin (CPX) regulates synaptic vesicle fusion and neurotransmitter release by modulating the assembly of the soluble NSF attachment protein receptor (SNARE) complex, ensuring precise signal transmission in the retina and the broader central nervous system (CNS). While CPX1 or CPX2 isoforms (CPX1/2) play crucial roles in classical CNS synapses, CPX3 or CPX4 isoforms (CPX3/4) specifically regulate retinal ribbon synapses.
View Article and Find Full Text PDFBiomedicines
November 2024
Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany.
Background: Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis.
View Article and Find Full Text PDFAt the first synapse in the vertebrate retina, rod photoreceptor terminals form deep invaginations occupied by multiple second-order rod bipolar and horizontal cell (RBP and HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. We investigated the impact of this complex architecture on the diffusion of synaptic glutamate and activity of postsynaptic receptors.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
iScience
October 2024
Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!