Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement.

Nanotechnology

FEI Electron Optics, Eindhoven, The Netherlands.

Published: February 2011

Thermally assisted electron beam induced deposition can result in an improvement of the purity of nano-scale depositions. Six commonly used organic precursors were examined: W(CO)(6), TEOS (tetraethylorthosilicate), MeCpPtMe(3), Co(CO)(3)NO, Co(2)(CO)(8), and Me(2)Auacac. The last two precursors were also tested on two different instruments to confirm reproducibility of the results. The influence of the substrate temperature on the composition of the deposition has been quantified systematically in the temperature range 25-360 °C. It has been shown that most purities improve when applying an elevated temperature, while the shape of the deposition remains intact. The purity improvement is achieved at the cost of a lower deposition yield. The amount of improvement is different for each precursor. Within the maximum temperature range of 360 °C, the best improvement was found for W(CO)(6): from 36.7 at.% at 25 °C to 59.2 at.% at 280 °C. For both cobalt precursors an additional transition region between patterned electron beam induced deposition (EBID) and thermal thin film growth has been identified. In this region seeded growth occurs with strongly increased growth rates.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/22/5/055302DOI Listing

Publication Analysis

Top Keywords

electron beam
12
beam induced
12
induced deposition
12
purity improvement
8
temperature range
8
deposition
6
improvement
5
deposition elevated
4
elevated temperatures
4
temperatures compositional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!