We describe a new technique for random surface texturing of a gallium nitride (GaN) light-emitting diode wafer through a mask-less dry etch process. This involves depositing a sub-monolayer film of silica nanospheres (typical diameter of 200 nm) and then subjecting the coated wafer to a dry etch process with enhanced physical bombardment. The silica spheres acting as nanotargets get sputtered and silica fragments are randomly deposited on the GaN epi-layer. Subsequently, the reactive component of the dry etch plasma etches through the exposed GaN surface. Silica fragments act as nanoparticles, locally masking the underlying GaN. The etch rate is much reduced at these sites and consequently a rough topography develops. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) inspections show that random topographic features at the scale of a few tens of nanometres are formed. Optical measurements using angle-resolved photoluminescence show that GaN light-emitting diode material thus roughened has the capability to extract more light from within the epilayers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/5/055301 | DOI Listing |
Adv Mater
January 2025
School of Electronic Engineering, Soongsil University, Seoul, 06938, South Korea.
Recent advances in mass transfer technology are expected to bring next-generation micro light-emitting diodes (µLED) displays into reality, although reliable integration of the active-matrix backplane with the transferred µLEDs remains as a challenge. Here, the µLED display technology is innovated by demonstrating pixel circuit-integrated micro-LEDs (PIMLEDs) and integrating them onto a transparent glass substrate. The PIMLED comprises of low-temperature poly-silicon transistors and GaN µLED.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Microelectronics, Shanghai University, Shanghai 200444, China.
GaN-based micro-light-emitting diodes (Micro-LEDs) are regarded as promising light sources for near-eye-display applications such as augmented reality/virtual reality (AR/VR) displays due to their high resolution, high brightness, and low power consumption. However, the application of Micro-LEDs in high-pixel-per-inch (PPI) displays is constrained by the drop in efficiency caused by sidewall defects in small-sized devices. In this study, a process method involving NH plasma pretreatment to reduce sidewall defects is proposed and investigated for enhancing the external quantum efficiency (EQE) of small-sized devices.
View Article and Find Full Text PDFNanotechnology
December 2024
College of Nanoscale Science and Engineering, State University of New York at Albany, NFS 234, 215 Fuller Road, Albany, NY 12203, USA, Albany, 12203, UNITED STATES.
GaN is an important semiconductor for energy-efficient light-emitting devices. Hydrogen plays a crucial role in gallium nitride (GaN) growth and processing. It can form electrically neutral complexes with acceptors during growth, which significantly increases the acceptor incorporation.
View Article and Find Full Text PDFNano Lett
December 2024
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Linearly polarized micro light-emitting diodes (LP-Micro-LEDs) exhibit exceptional potential across diverse fields. The existing methods to introduce polarization to initially unpolarized Micro-LEDs and to further enhance the degree of polarization are, however, at the expense of low luminous efficiency. We fabricated a GaN-based blue Micro-LED integrated with a Al nanograting and a specially designed Ag/GaN meta-grating, which overcomes the dilemma between the luminous efficiency and polarization degree by simultaneously introducing the effects of mode selection and energy recycling.
View Article and Find Full Text PDFDiscov Nano
December 2024
Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
This study fabricated 10 μm chip size μLEDs of blue-light GaN based epilayers structure with different mesa processes using dry etching and ion implantation technology. Two ion sources, As and Ar, were applied to implant into the LED structure to achieve material isolation and avoid defects on the mesa sidewall caused by the plasma process. Excellent turn-on behavior was obtained in both ion-implanted samples, which also exhibited lower leakage current compared to the sample fabricated by the dry etching process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!