Tobramycin Inhalation Solution USP (TOBI), a therapy developed to treat lung infections associated with cystic fibrosis (CF), was presented as a demonstration case for collaborative pharmaceutical development at a Clinical and Translational Science Awards Industry Forum on "Promoting Efficient and Effective Collaborations Among Academia, Government, and Industry" held in February 2010. TOBI was developed by PathoGenesis Corporation (Seattle, WA) in collaboration with the academic inventors, the National Institutes of Health, the U.S. Food and Drug Administration, and the CF Foundation. The presenters, representing the academic, industry, and foundation partners, each reviewed the program from their perspectives and identified challenges that existed during the discovery, development, and commercialization of TOBI. The attendees were asked to consider other collaborative opportunities that might have further improved TOBI development, including the optimal roles of the academic researchers, foundations, and other agencies when industry drives development and commercialization decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038130 | PMC |
http://dx.doi.org/10.1126/scitranslmed.3001634 | DOI Listing |
Nutrients
December 2024
Department of Pediatrics 1, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania.
The gut microbiome is essential for children's normal growth and development, with its formation aligning closely with key stages of growth. Factors like birth method, feeding practices, and antibiotic exposure significantly shape the composition and functionality of the infant gut microbiome. Small intestinal bacterial overgrowth (SIBO) involves an abnormal increase in bacteria within the small intestine.
View Article and Find Full Text PDFMicroorganisms
December 2024
Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
is a major cause of chronic respiratory infections in patients with cystic fibrosis (CF), with biofilm formation contributing to its persistence and antibiotic resistance. This study aimed to gain insights into the mechanistic action of succinic acid as a ciprofloxacin adjuvant against clinically relevant CF isolates, including small colony variants and mucoid strains, and a ciprofloxacin-resistant strain grown within CF dense mucus. Time-kill assays in artificial CF mucus, along with planktonic and surface-attached biofilm experiments, were used to assess the activity of succinic acid alone and in combination with sublethal ciprofloxacin concentrations.
View Article and Find Full Text PDFPathogens
November 2024
Laboratorio de Investigación en Microbiología y Resistencia Antimicrobiana, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico.
The poor prognosis of infections associated with multidrug-resistant can be attributed to several conditions of the patient and virulence factors of the pathogen, such as the type III secretion system (T3SS), which presents the ability to inject four effectors into the host cell: ExoS, ExoT, ExoU and ExoY. The aim of this study was to analyze the distribution of genes through multiplex polymerase chain reaction in strains isolated from patients at a third-level pediatric hospital and their relationships with clinical variables, e.g.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.
View Article and Find Full Text PDFLife (Basel)
December 2024
Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France.
The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!