PHLPP belongs to a novel family of protein phosphatases that serve as negative regulators of Akt. There are two isoforms, PHLPP1 and PHLPP2, identified in this family. Our previous studies indicated a tumor suppressor role of both PHLPP isoforms in colon cancer. Here we report that the expression of PHLPP is controlled by mTOR-dependent protein translation in colon and breast cancer cells. Treating cells with rapamycin or knockdown of mTOR using RNAi results in a marked decrease of PHLPP protein expression. In contrast, stable knockdown of TSC2, a negative regulator of mTOR activity, increases PHLPP expression. The rapamycin-mediated down-regulation of PHLPP is blocked by expression of a rapamycin-insensitive mutant of p70S6K. In addition, depletion of 4E-BP1 expression by RNAi results in an increase of PHLPP expression and resistance to rapamycin-induced down-regulation. Moreover, inhibition of mTOR activity by amino acid or glucose starvation reduces PHLPP expression in cells. Functionally, we show that rapamycin-mediated inhibition of PHLPP expression contributes to rapamycin resistance in colon cancer cells. Thus, our studies identify a compensatory feedback regulation in which the activation of Akt is inhibited by up-regulation of PHLPP through mTOR, and this mTOR-dependent expression of PHLPP subsequently determines the rapamycin sensitivity of cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057781PMC
http://dx.doi.org/10.1074/jbc.M110.183087DOI Listing

Publication Analysis

Top Keywords

phlpp expression
20
cancer cells
16
phlpp
12
expression
10
rapamycin sensitivity
8
sensitivity cancer
8
colon cancer
8
expression phlpp
8
mtor activity
8
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!