Epstein-Barr virus (EBV)-encoded EBNA3C is one of the latent proteins essential for the efficient transformation of human primary B lymphocytes into continuously proliferating lymphoblastoid cell lines (LCLs) in vitro through manipulation of a number of major cellular pathways. Although it does not have direct DNA-binding activity, EBNA3C plays a central role in the transcriptional modulation of a wide range of both viral and cellular genes during latent infection. Recently, we showed that EBNA3C can directly bind to the tumor suppressor protein p53 and repress its functions, in part by blocking its transcriptional activity as well as facilitating its degradation through stabilization of its negative regulator, Mdm2. In this study, we further showed that EBNA3C can negatively regulate p53-mediated functions by interacting with its regulatory proteins, the inhibitor of growth family proteins ING4 and ING5, shown to be frequently deregulated in different cancers. Functional mapping revealed that both ING4 and ING5 bound to N-terminal domain residues 129 to 200 of EBNA3C, which was previously demonstrated to associate with p53 and is also essential for LCL growth. In addition, we showed that a conserved domain of either ING4 or ING5 bound to both p53 and EBNA3C in a competitive manner, suggesting a potential role for EBNA3C whereby the ING4 or -5/p53 pathway is modulated in EBV-infected cells. Subsequently, we demonstrated that EBNA3C significantly suppresses both the ING4- and ING5-mediated regulation of p53 transcriptional activity in a dose-dependent manner. A colony formation assay as well as an apoptosis assay showed that EBNA3C nullified the negative regulatory effects on cell proliferation induced by coupled expression of p53 in the presence of either ING4 or ING5 in Saos-2 (p53(-/-)) cells. This report demonstrates a possible role for the candidate tumor suppressor ING genes in the biology of EBV-associated cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067769 | PMC |
http://dx.doi.org/10.1128/JVI.02279-10 | DOI Listing |
Cell Mol Biol Lett
November 2024
Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation.
View Article and Find Full Text PDFDevelopment
March 2024
Walter and Eliza Hall Institute of Medical Research, Epigenetics and Development Division, Melbourne, VIC 3052, Australia.
Curr Opin Pharmacol
February 2023
Univ Rennes 1, INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, F-35000, Rennes, France. Electronic address:
The INhibitor of Growth (ING) proteins (ING1, ING2, ING3, ING4 and ING5) are a family of epigenetic regulators. Their decreased expression in numerous cancers led to identifying the ING proteins as gatekeeper tumor suppressors as they regulate cell cycle progression, apoptosis and senescence. Subsequently, they were also described as caretaker tumor suppressors through their involvement in DNA replication and the DNA damage response (DDR).
View Article and Find Full Text PDFFront Cell Dev Biol
November 2022
Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
As a Class II tumor suppressor, ING5 contains nuclear localization signal, plant homeodomain, novel conserved region, and leucine zipper-like domains. ING5 proteins form homodimer into a coil-coil structure, and heterodimers with ING4, histone H3K4me3, histone acetyltransferase (HAT) complex, Tip60, Cyclin A1/CDK2, INCA1 and EBNA3C for the transcription of target genes. The acetylated proteins up-regulated by ING5 are preferentially located in nucleus and act as transcription cofactors, chromatin and DNA binding functions, while those down-regulated by ING5 mostly in cytoplasm and contribute to metabolism.
View Article and Find Full Text PDFPeerJ
January 2023
Faculty of Engineering, Turkish-German University, Istanbul, Turkey.
Background: Due to its intrinsically disordered nature, the histone tail is conformationally heterogenic. Therefore, it provides specific binding sites for different binding proteins or factors through reversible post-translational modifications (PTMs). For instance, experimental studies stated that the ING family binds with the histone tail that has methylation on the lysine in position 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!