ENMD-2076 is a novel orally active, small molecule kinase inhibitor with a mechanism of action involving several pathways key to tumor growth and survival: angiogenesis, proliferation, and the cell cycle. ENMD-2076 has selective activity against the mitotic kinase Aurora A, as well as kinases involved in angiogenesis (VEGFRs, FGFRs). ENMD-2076 inhibited the growth in vitro of a wide range of human solid tumor and hematopoietic cancer cell lines with IC(50) values ranging from 0.025 to 0.7 μmol/L. ENMD-2076 was also shown to induce regression or complete inhibition of tumor growth in vivo at well-tolerated doses in tumor xenograft models derived from breast, colon, melanoma, leukemia, and multiple myeloma cell lines. Pharmacodynamic experiments in vivo showed that in addition to inhibiting Aurora A, single doses of ENMD-2076 had sustained inhibitory effects on the activation of Flt3 as well as the angiogenic tyrosine kinases, VEGFR2/KDR and FGFR1 and 2. ENMD-2076 was shown to prevent the formation of new blood vessels and regress formed vessels in vivo at doses equivalent to those that gave substantial activity in tumor xenograft models. These results indicate that ENMD-2076 is a well-tolerated, orally active multitarget kinase inhibitor with a unique antiangiogenic/antiproliferative profile and provides strong preclinical support for use as a therapeutic for human cancers. Several phase 1 studies involving ENMD-2076 have been recently completed, and the compound is currently being evaluated in a phase 2 clinical trial in patients with platinum-resistant ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-10-0574DOI Listing

Publication Analysis

Top Keywords

orally active
12
kinase inhibitor
12
enmd-2076
9
tumor growth
8
cell lines
8
tumor xenograft
8
xenograft models
8
tumor
5
enmd-2076 orally
4
kinase
4

Similar Publications

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

The two most clinically important members of the flavivirus genus, Zika virus (ZIKV) and dengue virus (DENV) pose a significant public health challenge. They cause a range of diseases in humans, from hemorrhagic to neurological manifestations, leading to economic and social burden worldwide. Nevertheless, there are no approved antiviral drugs to treat these infections.

View Article and Find Full Text PDF

Hyperthyroidism is a common endocrine disease caused by the production of thyroid hormones in excessive amounts. Propylthiouracil (PTU) is one of the anti-thyroid drugs (ATD) used in the treatment of hyperthyroidism. Rectal PTU should be considered by physicians as a valuable option for managing hyperthyroidism as an alternative route of administration for patients who cannot tolerate oral medications.

View Article and Find Full Text PDF

Esophageal perforation (EP) resulting from nonaccidental trauma in a neonate is extremely rare. We report a previously healthy 12-day-old neonate presenting with stridor, respiratory distress, and bloody vomitus. Clinical, radiographic, and endoscopic evaluations confirmed the diagnosis of EP.

View Article and Find Full Text PDF

The gut microbiota influences the reactivity of the immune system, and has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!