Objectives: There is increasing evidence that the endocannabinoid system may be involved in pathological fibrosis, and that its modulation might limit fibrotic responses. The aim of this study was to examine the capacity of a synthetic cannabinoid receptor agonist to modify skin fibrosis in the bleomycin mouse model of scleroderma.

Methods: Skin fibrosis was induced by local injections of bleomycin in two groups of DBA/2J mice. One group was cotreated with the synthetic cannabinoid WIN55,212-2 at 1 mg/kg/day. Skin fibrosis was evaluated by histology and skin thickness and hydroxyproline content were quantified. Markers of fibroblast activation, including α smooth muscle actin and the profibrotic cytokines transforming growth factor (TGF)β, connective tissue growth factor (CTGF) and platelet-derived growth factor (PDGF)-BB, were examined. Levels of PSMAD2/3, which are crucial in extracellular matrix overproduction, were analysed.

Results: Bleomycin treatment induced typical skin fibrosis. Upon WIN55,212-2 treatment dermal fibrosis was completely prevented. Subcutaneous inflammatory cell infiltration, dermal thickness and collagen content resulted similar to those of the control group. The synthetic cannabinoid prevented fibroblasts activation induced by bleomycin, paralleled by a strong inhibition of TGFβ, CTGF and PDGF-BB expression. Phosphorylation of SMAD2/3 was significantly downregulated after WIN55,212-2 exposure.

Conclusions: Taken together, the results indicate that the synthetic cannabinoid WIN55,212-2 is capable of preventing skin fibrosis in a mouse model of scleroderma.

Download full-text PDF

Source
http://dx.doi.org/10.1136/ard.2010.137539DOI Listing

Publication Analysis

Top Keywords

skin fibrosis
20
synthetic cannabinoid
16
growth factor
12
fibrosis
8
dermal fibrosis
8
mouse model
8
cannabinoid win55212-2
8
skin
6
cannabinoid
5
bleomycin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!