A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of elevated CO2 concentration on seed production in C3 annual plants. | LitMetric

The response of seed production to CO(2) concentration ([CO(2)]) is known to vary considerably among C(3) annual species. Here we analyse the interspecific variation in CO(2) responses of seed production per plant with particular attention to nitrogen use. Provided that seed production is limited by nitrogen availability, an increase in seed mass per plant results from increase in seed nitrogen per plant and/or from decrease in seed nitrogen concentration ([N]). Meta-analysis reveals that the increase in seed mass per plant under elevated [CO(2)] is mainly due to increase in seed nitrogen per plant rather than seed [N] dilution. Nitrogen-fixing legumes enhanced nitrogen acquisition more than non-nitrogen-fixers, resulting in a large increase in seed mass per plant. In Poaceae, an increase in seed mass per plant was also caused by a decrease in seed [N]. Greater carbon allocation to albumen (endosperm and/or perisperm) than the embryo may account for [N] reduction in grass seeds. These differences in CO(2) response of seed production among functional groups may affect their fitness, leading to changes in species composition in the future high-[CO(2)] ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erq401DOI Listing

Publication Analysis

Top Keywords

increase seed
24
seed production
20
seed mass
16
mass plant
16
seed
14
seed nitrogen
12
co2 concentration
8
response seed
8
nitrogen plant
8
decrease seed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!