Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil.

J Hazard Mater

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

Published: February 2011

Microbe-assisted phytoremediation is emerging as one of the most effective means by which plants and their associated rhizosphere microbes degrade organic contaminants in soils. A pot study was conducted to examine the effects of inoculation with Rhizobium meliloti on phytoremediation by alfalfa grown for 90 days in an agricultural soil contaminated with weathered polycyclic aromatic hydrocarbons (PAHs). Planting with uninoculated alfalfa (P) and alfalfa inoculated with R. meliloti (PR) significantly lowered the initial soil PAH concentrations by 37.2 and 51.4% respectively compared with unplanted control soil. Inoculation with R. meliloti significantly increased the counts of culturable PAH-degrading bacteria, soil microbial activity and the carbon utilization ability of the soil microbial community. The results suggest that the symbiotic association between alfalfa and Rhizobium can stimulate the rhizosphere microflora to degrade PAHs and its application may be a promising bioremediation strategy for aged PAH-contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.11.126DOI Listing

Publication Analysis

Top Keywords

rhizobium meliloti
8
meliloti phytoremediation
8
polycyclic aromatic
8
aromatic hydrocarbons
8
soil microbial
8
soil
6
alfalfa
5
influence rhizobium
4
meliloti
4
phytoremediation polycyclic
4

Similar Publications

Enhanced physicochemical, rheological and antioxidant properties of highly succinylated succinoglycan exopolysaccharides obtained through succinic anhydride esterification reaction.

Int J Biol Macromol

January 2025

Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea. Electronic address:

Highly succinylated succinoglycan (HS-SG) was prepared by reacting succinic anhydride with succinoglycan (SG) exopolysaccharide isolated from Sinorhizobium meliloti. The rheological, physicochemical properties, and antioxidant effects of HS-SG were evaluated in comparison with SG. NMR and FTIR analyses confirmed that HS-SG retained the characteristic glycosidic structure of SG while showing a relative increase in succinyl functional groups.

View Article and Find Full Text PDF

Flooding induces hypoxia in plant tissues, impacting various physiological and biochemical processes. This study investigates the adaptive response of the roots and nitrogen-fixing nodules of Medicago truncatula in symbiosis with Sinorhizobium meliloti under short-term hypoxia caused by flooding. Four-week-old plants were subjected to flooding for 1 to 4 days.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.

View Article and Find Full Text PDF

In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!