Epigenetic changes play a crucial role in leukemogenesis. HDACs are frequently recruited to target gene promoters by balanced translocation derived oncogenic fusion proteins. As important epigenetic effector mechanisms, histone deacetylases (HDAC) have emerged as potential therapeutic targets. However, the patterns of HDAC1 localization and the role of HDACs in leukemia pathogenesis remain to be elucidated. Using ChIP-Chip analyses we analyzed HDAC1 deposition patterns at more than 10,000 gene promoters in a large cohort of leukemia patients and CD34+ controls. HDAC1 binding was significantly increased in AML blasts compared to CD34+ progenitor cells at 130 gene promoters whereas decreased binding was observed at 66 gene promoters. Distinct HDAC1 binding patterns occurred in AML subtypes with balanced translocations t(15;17), t(8;21) and inv(16). In addition, a more generalized signature was established, that revealed an AML specific pattern of HDAC1 distribution. Many of the HDAC1-binding altered promoters regulate genes involved in hematopoiesis, transcriptional regulation and signal transduction. HDAC1 binding patterns were associated with patients' event free survival. This is the first study to determine HDAC1 modification patterns in a large number of AML and ALL specimens. Our findings suggest that dyslocalization of HDAC1 is a common feature in AML. Importantly, HDAC1 modifications possess prognostic power for patient survival. Our findings suggest that altered HDAC1 localization is an explanation for the observed benefit of HDAC inhibitors in AML therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2010.11.006 | DOI Listing |
Pancreatology
January 2025
Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary. Electronic address:
Background/objectives: Loss-of-function chymotrypsin C (CTRC) variants increase the risk for chronic pancreatitis (CP) by reducing protective pancreatic CTRC activity. Variants in the 5' upstream region that includes the promoter might affect CTRC expression but have not been investigated to date. The aim of the present study was to address this knowledge gap.
View Article and Find Full Text PDFAnimal
November 2024
Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China. Electronic address:
The domestication of ducks represents a pivotal evolutionary shift from the unguided propagation of wild species to deliberate human-mediated selection, culminating in distinct behavioural, morphological, and physiological traits that differentiate domesticated ducks from their wild counterparts. This transition has yielded breeds with traits fine-tuned to specific economic roles, such as egg production, meat yield, or dual-purpose functionality. Duck domestication plays a significant role in poultry production globally, meeting the growing demand for eggs and meat in various regions.
View Article and Find Full Text PDFFront Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Life Sciences, Gannan Normal University, Ganzhou, China.
Introduction: Chinese kale ( var. alboglabra), is an annual herb belonging to the Brassica genus of Cruciferae, and is one of the famous specialty vegetables of southern China. Some varieties show bright green leaf (BGL) traits and have better commerciality.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Life Sciences, Changzhi University, Changzhi, China.
is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!