The aim of study was to explore the feasibility of quantitative chimerism analysis of regulatory T (Treg) cells using immune sorting coupling short tandem repeat (STR) method. 14 sets of artificial chimera samples were prepared by mixed lymphocytes according to different proportion. The CD4(+)CD25(+) Treg cells were harvested by negative and positive selection of immunomagnetic beads, then the STR polymorphisms of 16 loci in sorted Treg cells was analyzed. The results showed that the DNA amount extracted from sorted Treg cells was fit for STR detection. All STR alleles specific for recipient or donor could be detected and the quantitative results were consistent with theoretic values in over 10% recipient chimeras. But only partial recipient alleles could be detected and the quantitative results were different from theoretic values in less then 1% recipient chimeras. It is concluded that a quantitative chimerism analysis of Treg cell based on immune sorting is established. The sensitivity and accuracy for chimera detection are 1% to 10%, and this method can be used to monitoring hematopoietic chimerism following allogeneic hematopoietic stem cell transplantation.
Download full-text PDF |
Source |
---|
Eur J Trauma Emerg Surg
January 2025
Department of Trauma Surgery and Orthopedics, Goethe University, University Hospital, Frankfurt, Germany.
Objective: Global per capita alcohol consumption is increasing, posing significant socioeconomic and medical challenges also due to alcohol-related traumatic injuries but also its biological effects. Trauma as a leading cause of death in young adults, is often associated with an increased risk of complications, such as sepsis and multiple organ failure, due to immunological imbalances. Regulatory T cells play a crucial role in maintaining immune homeostasis by regulating the inflammatory response.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.
View Article and Find Full Text PDFJ Diabetes Metab Disord
June 2025
Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623 Saudi Arabia.
Objectives: Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections.
View Article and Find Full Text PDFBackground: For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g.
View Article and Find Full Text PDFFront Immunol
January 2025
Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.
Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!