MADS-box genes encode a family of transcription factors that regulate diverse developmental programs in plants. The present work shows the regulation of flowering time by AGL6 through control of the transcription of both a subset of the FLOWERING LOCUS C (FLC) family genes and FT, two key regulators of flowering time. The agl6-1D mutant, in which AGL6 was activated by the 35S enhancer, showed an early flowering phenotype under both LD and SD conditions. Its early flowering was additively accelerated by CONSTANS (CO) overexpression. The agl6-1D mutation strongly suppressed the late flowering of fve-4 and fca-9 mutants. Endogenous AGL6 transcript accumulation was photoperiod-independent and the AGL6:GFP protein was preferentially localized in the nucleus. In agl6-1D plants, the expression of FLC, MADS AFFECTING FLOWERING (MAF) 4, and MAF5 was downregulated. Interestingly, late flowering of a functional FRIGIDA (FRI) FLC allele was dramatically suppressed by the agl6-1D mutation. AGL6 activation in the flc-3 background further enhanced FT expression, suggesting that AGL6 also regulates FT expression independently of FLC mRNA level. A near RNA-null ft-10 mutation completely suppressed early flowering of the agl6-1D plants, suggesting that FT is a major downstream output of AGL6. Transgenic plants overexpressing an artificial microRNA targeting AGL6 showed a late-flowering phenotype. In these plants, FT expression was downregulated, whereas FLC expression was upregulated. The present results suggest that AGL6 acts as a floral promoter with a dual role, the inhibition of the transcription of the FLC/MAF genes and the promotion of FT expression in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2010.04402.x | DOI Listing |
Plants (Basel)
January 2025
Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
Nitrogen (N) is an essential determinant of strawberry growth and productivity. However, plants exhibit varying preferences for sources of nitrogen, which ultimately affects its use efficiency. Thus, it is imperative to determine the preferred N source for the optimization of indoor strawberry production.
View Article and Find Full Text PDFPlants (Basel)
January 2025
National Wine Agency of Georgia, Tbilisi 0159, Georgia.
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
New Phytol
January 2025
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
Immobility of flowering plants requires them to engage pollen vectors to outcross, introducing considerable inefficiency in the conversion of pollen production into sired seeds. Whether inefficiencies influence the evolution of the relative resource allocation to female and male functions has been debated for more than 40 years. Whereas early models suggested no effect, negative interspecific relations of mean pollen production and pollen : ovule ratios to the proportion of removed pollen that is exported to stigmas (pollen-transfer efficiency) indicate otherwise.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
In some mutualisms involving host plants, photoassimilates are provided as rewards to symbionts. Endophagous organisms often manipulate host plants to increase access to photoassimilates. Host manipulations by endophagous organisms that are also mutualists are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!