Aims: The role of CYP pharmacogenetics in the bioactivation of cyclophosphamide is still controversial. Recent clinical studies have suggested a role for either CYP2C19 or CYP2B6. The aim of this study was to clarify the role of these pharmacogenes.
Methods: We used a combined in vitro-in vivo approach to determine the role of these pharmacogenes in the bioactivation of the prodrug to 4-hydroxy cyclophosphamide (4-OHCP). Cyclophosphamide metabolism was determined in a human liver biobank (n= 14) and in patients receiving the drug for treatment of lupus nephritis (n= 16)
Results: In livers of known CYP2C19 and CYP2B6 genotype and protein expression we observed that there was a combined role for both CYP2C19 and CYP2B6 in the bioactivation of cyclophosphamide in vitro. The presence of at least one loss of function (LoF) allele at either CYP2C19 or CYP2B6 resulted in a significant decrease in both V(max) (P= 0.028) and CL(int) (P= 0.0017) compared with livers with no LoF alleles. This dual genotype relationship was also observed in a preliminary clinical study, with patients who had ≥1 LoF allele at either CYP2C19 or CYP2B6 also displaying significantly (P= 0.0316) lower bioactivation of cyclophosphamide. The mean 4-OHCP : CP bioactivation ratio was 0.0014 (95% CI 0.0007, 0.002) compared with 0.0071 (95% CI 0.0001, 0.014) in patients with no LoF alleles at either of these genes.
Conclusions: The presence of ≥1 LoF allele(s) at either CYP2B6 or CYP2C19 appeared to result in decreased bioactivation of cyclophosphamide both in vitro and in patients. Further clinical studies to confirm this relationship are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014068 | PMC |
http://dx.doi.org/10.1111/j.1365-2125.2010.03789.x | DOI Listing |
Drug Metab Pharmacokinet
November 2024
Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
The previously reported Template system for the prediction of human CYP2B6-mediated reactions (Drug Metab Pharmacokinet 26 309-330, 2011) has been refined with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, and CYP3A4, 360 reactions of 261 distinct chemicals reported as CYP2B6 ligands were examined in the refined system.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFSci Rep
December 2024
National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand.
Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.
View Article and Find Full Text PDFFood Saf (Tokyo)
December 2024
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
Adverse drug reactions (ADRs) pose substantial public health issues, necessitating population-specific characterization due to variations in pharmacogenes. This study delineates the pharmacogenomic (PGx) landscape of the South Korean (SKR) population, focusing on 21 core pharmacogenes. Whole genome sequencing (WGS) was conducted on 396 individuals, including 99 healthy volunteers, 95 patients with chronic diseases, 81 with colon cancer, 81 with breast cancer, and 40 with gastric cancer, to identify genotype-specific drug dosing recommendations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!