Antiviral innate immunity is triggered by sensing viral nucleic acids. RIG-I (retinoic acid-inducible gene-I) is an intracellular molecule that responds to viral nucleic acids and activates downstream signaling, resulting in the induction of members of the type I interferon (IFN) family, which are regarded among the most important effectors of the innate immune system. Although RIG-I is expressed ubiquitously in the cytoplasm, its levels are subject to transcriptional and post-transcriptional regulation. RIG-I belongs to the IFN-stimulated gene (ISG) family, but certain cells regulate its expression through IFN-independent mechanisms. Several lines of evidence indicate that deregulated RIG-I signaling is associated with autoimmune disorders. Further studies suggest that RIG-I has functions in addition to those directly related to its role in RNA sensing and host defense. We have much to learn and discover regarding this interesting cytoplasmic sensor so that we can capitalize on its properties for the treatment of viral infections, immune disorders, cancer, and perhaps other conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099591 | PMC |
http://dx.doi.org/10.1615/critrevimmunol.v30.i6.10 | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
January 2025
College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China. Electronic address:
This study seeks to explore the molecular regulatory mechanism within Dosinia corrugata in response to extreme high-temperature conditions, aiming to enhance the sustainable development of the D. corrugata aquaculture industry. To identify heat-responsive genes and elucidate adaptive mechanisms, we conducted transcriptional profiling of D.
View Article and Find Full Text PDFMech Ageing Dev
January 2025
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China. Electronic address:
Background: Alveolar epithelial cells (AECs) are the primary targets of many pathogens and play an important role in sensing viruses and regulating immunity. Yet, little is known about the antiviral responses in the aged AECs.
Methods: The responses of young or aged AECs after viral infection were analyzed using methods such as flow cytometry, quantitative real-time PCR, Western blot detection, and transwell chemotaxis assay.
Mol Cancer Ther
January 2025
Vaxiion Therapeutics (United States), San Diego, California, United States.
In situ immunization (ISI) has emerged as a promising approach to bolster early phases of the cancer immunity cycle through improved T cell priming. One class of ISI agents, oncolytic viruses (OVs), has demonstrated clinical activity, but overall benefit remains limited. Mounting evidence suggests that due to their inherent vulnerability to antiviral effects of type I interferon (IFN), OVs have limited activity in solid tumors expressing stimulator of interferon genes (STING) and/or retinoic acid-inducible gene I (RIG-I).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Fisheries College, Hunan Agricultural University, Changsha 410128, China.
belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that () acts as a negative regulator in the antiviral immune response. is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney.
View Article and Find Full Text PDFMicroorganisms
January 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
Developing novel antiviral drugs has always been a significant forefront in biological medicine research. Antiviral drugs can be extracted, purified, and synthesized from various biological sources and by different methods. However, they are less explored in veterinary medicine for animal viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!