To understand certain mechanisms causing variations between rice cultivars with regard to cadmium uptake and tolerance, pot soil experiments were conducted with two rice cultivars of different genotypes under different soil Cd levels. The relationships between plant Cd uptake and iron/manganese (Fe/Mn) plaque formation on roots were investigated. The results showed that rice cultivars differed markedly in Cd uptake and tolerance. Under soil Cd treatments, Cd concentrations and accumulations in the cultivar Shanyou 63 (the genotype indica) were significantly higher than those in the cultivar Wuyunjing 7 (the genotype japonica) (P < 0.01, or P < 0.05), and Shanyou 63 was more sensitive to Cd toxicity than Wuyunjing 7. The differences between the rice cultivars were the largest at relatively low soil Cd level (i.e., 10 mg/kg). Fe concentrations in dithionite-citrate-bicarbonate root extracts of Shanyou 63 were generally lower than that of Wuyunjing 7, and the difference was the most significant under the treatment of 10 mg Cd/kg soil. The results indicated that the formation of iron plaque on rice roots could act as a barrier to soil Cd toxicity, and may be a "buffer" or a "reservoir" which could reduce Cd uptake into rice roots. And the plaque may contribute, to some extent, to the genotypic differences of rice cultivars in Cd uptake and tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(09)60218-7DOI Listing

Publication Analysis

Top Keywords

rice cultivars
24
uptake tolerance
12
variations rice
8
cadmium uptake
8
differences rice
8
rice roots
8
rice
7
cultivars
6
uptake
6
soil
6

Similar Publications

Novel Insights into Hg Oxidation in Rice Leaf: Catalase Functions and Transcriptome Responses.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China.

Rice leaves can assimilate atmospheric mercury (Hg), which is accumulated by grains and causes health risks to rice consumers. However, the molecular mechanisms underlying Hg assimilation in rice leaves remain poorly understood. Here, we investigated catalase's (CAT) function in Hg oxidation within rice leaves, as well as the Hg speciation and transcriptomic profiles of rice leaves exposed to Hg.

View Article and Find Full Text PDF

Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.

View Article and Find Full Text PDF

Low phytate level is a desirable trait because it promotes mineral bioavailability and thus offers a solution to tackle mineral deficiencies. The objectives of the present study were to characterize low phytate (lpa) Basmati rice mutants for the identification of novel mutations in target gene(s) and to develop a PCR-based CAPS (cleaved amplified polymorphic sequence) marker for low phytate Basmati rice. For this purpose, cultivar Super Basmati (Q4) was irradiated with gamma rays (Co source) and three mutants named Q1 (lpa-5-9), Q2 (lpa-9-13), and Q3 (lpa-59-14) were isolated.

View Article and Find Full Text PDF

Heat shock, a transient exposure to high temperatures, is a substantial hazard to rice ( L.) production and sustainability. The objective of this review paper is to summarize the impact of heat shock on rice and explore approaches to mitigate its adverse effects to achieve sustainable production.

View Article and Find Full Text PDF

Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets.

NAR Genom Bioinform

December 2024

State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.

Research on the dynamic expression of genes in plants is important for understanding different biological processes. We used the large amounts of transcriptomic data from various plant sample sources that are publicly available to investigate whether the expression levels of a subset of highly variable genes (HVGs) can be used to accurately identify the phenotypes of plants. Using maize ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!