In this project we report on the angiotensin I-converting enzyme (ACE)-inhibitory activity of a bovine gelatin hydrolysate (Bh2) that was submitted to further hydrolysis by different enzymes. The thermolysin hydrolysate (Bh2t) showed the highest in vitro ACE inhibitory activity, and interestingly a marked in vivo blood pressure-lowering effect was demonstrated in spontaneously hypertensive rats (SHR). In contrast, Bh2 showed no effect in SHR, confirming the need for the extra thermolysin hydrolysis. Hence, an angiotensin I-evoked contractile response in isolated rat aortic rings was inhibited by Bh2t, but not by Bh2, suggesting ACE inhibition as the underlying antihypertensive mechanism for Bh2t. Using mass spectrometry, seven small peptides, AG, AGP, VGP, PY, QY, DY and IY or LY or HO-PY were identified in Bh2t. As these peptides showed ACE inhibitory activity and were more prominent in Bh2t than in Bh2, the current data provide evidence that these contribute to the antihypertensive effect of Bh2t.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf1037823DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
12
angiotensin i-converting
8
i-converting enzyme
8
ace inhibitory
8
bh2t bh2
8
bh2t
6
enzyme inhibitory
4
activity
4
activity gelatin
4
gelatin hydrolysates
4

Similar Publications

The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.

View Article and Find Full Text PDF

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.

View Article and Find Full Text PDF

Objectives: In Pseudomonas aeruginosa isolates, emerging meropenem resistance beyond imipenem resistance has become a problem. In this study, we aimed to investigate the relationship between the in vivo acquisition of antimicrobial resistance in fluoroquinolone- and carbapenem-resistant P. aeruginosa clinical isolates, the underlying molecular mechanisms, and exposure to antimicrobial agents.

View Article and Find Full Text PDF

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

Phosphorus addition diminishes the negative effect of nitrogen addition on methane sink in subtropical forest soils.

Sci Total Environ

January 2025

Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. Electronic address:

Increased global nitrogen (N) and phosphorus (P) inputs caused by human activities can significantly impact methane (CH) uptake in terrestrial ecosystems. Forest soils, as the largest CH sink among terrestrial ecosystems, play a crucial role in mitigating global warming. However, the effects of long-term N and P additions on CH sink and the associated microbial mechanisms in subtropical forest soils remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!