Estrogen Receptor alpha and beta (ER-α and -β) are members of the nuclear receptor family of transcriptional regulators with distinct roles in mediating estrogen dependent breast cancer cell growth and differentiation. Following activation by the hormone, these proteins undergo conformation changes and accumulate in the nucleus, where they bind to chromatin at regulatory sites as homo- and/or heterodimers and assemble in large multiprotein complexes. Although the two ERs share a conserved structure, they exert specific and distinct functional roles in normal and transformed mammary epithelial cells and other cell types. To investigate the molecular bases of such differences, we performed a comparative computational analysis of the nuclear interactomes of the two ER subtypes, exploiting two datasets of receptor interacting proteins identified in breast cancer cell nuclei by Tandem Affinity Purification for their ability to associate in vivo with ligand-activated ER-α and/or ER-β. These datasets comprise 498 proteins, of which only 70 are common to both ERs, suggesting that differences in the nature of the two ER interactomes are likely to sustain the distinct roles of the two receptor subtypes. Functional characterization of the two interactomes and their topological analysis, considering node degree and closeness of the networks, confirmed this possibility. Indeed, clustering and network dissection highlighted the presence of distinct and ER subtype-specific subnetworks endowed with defined functions. Altogether, these data provide new insights on the protein-protein interaction networks controlled by ER-α and -β that mediate their ability to transduce estrogen signaling in breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0mb00145g | DOI Listing |
ACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFDalton Trans
January 2025
CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.
In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
S-SPIRE Center, Department of Surgery, Stanford University School of Medicine, Stanford, California.
Importance: Transportation insecurity and lack of social support are 2 understudied social determinants of health that contribute to excess morbidity, mortality, and acute health care utilization. However, whether and how these social determinants of health are associated with cancer screening has not been determined and has implications for preventive care.
Objective: To determine whether transportation insecurity or social support are associated with screening adherence for colorectal, breast, and cervical cancer.
JAMA
January 2025
Fred Hutch Comprehensive Cancer Center, University of Washington, Seattle.
JAMA
January 2025
Institut Jules Bordet, l'Université Libre de Bruxelles and Hôpital Universitaire de Bruxelles, Brussels, Belgium.
Importance: Triple-negative breast cancer is an aggressive subtype with a high incidence in young patients, a high incidence in non-Hispanic Black women, and a high risk of progression to metastatic cancer, a devastating sequela with a 12- to 18-month life expectancy. Until recently, one strategy for treating early-stage triple-negative breast cancer was chemotherapy after surgery. However, it was not known whether the addition of immune therapy to postsurgery chemotherapy would be beneficial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!