Aims: The aim of the study was to evaluate by ultrasonography the local dystrophies caused by insulin subcutaneous injections. The insulin treated diabetic patients must inject their long life insulin into normal tissue. The objective was to add ultrasonographic arguments to the clinic examination in order to periodically reconsider the available area to be used.
Patients And Methods: Forty insulin treated patients (14 male, 26 female) were clinically diagnosed with hypertrophic, atrophic, nodular, or inflammatory-like tissue dystrophies as a consequence of injections. These local dystrophies are not always conspicuous, barely suggesting a subdermal pathology. US evaluation, mainly subcutis, was used for assessing them.
Results: Besides the clinical signs, ultrasonography offers some distinct appearances: a simple subcutis hypertrophy, a variety of nodular-shaped or diffuse hyperechogenity, subcutis atrophy, complex multilayer changes or possible inflammatory reactions. These abnormal entities have led to erratic insulin absorption and glucose control deterioration, if the patients have continued to inject into the same areas.
Conclusions: Ultrasound interrogation should be used as a non-invasive measure for diagnosing insulin injections local dystrophies. Once diagnosed, their future evolution should be observed. By making a real ultrasonographic map of the injected areas a functional insulin treatment could be obtained and preserved.
Download full-text PDF |
Source |
---|
Neurogenetics
January 2025
Department of Neuroscience and Behavioural Sciences, School of Medicine at Ribeirão Preto, University of São Paulo, Bandeirantes Av. 3900, Ribeirão Preto, São Paulo, 14040-900, Brazil.
Neuronal Ceroid Lipofuscinosis 11 (CLN11) is an ultra-rare subtype of adult-onset Neuronal Ceroid Lipofuscinosis. Its phenotype is variable and not fully known. A 21-year-old man was evaluated in our neurogenetic outpatient clinic for early onset complex phenotype, including learning difficulties, cerebellar ataxia, cone-rod dystrophy, epilepsy, and dystonia.
View Article and Find Full Text PDFNeurol Ther
January 2025
Biohaven Pharmaceuticals, Inc, 215 Church Street, New Haven, CT, 06510, USA.
Introduction: The Friedreich Ataxia Rating Scale-Activities of Daily Living (FARS-ADL) is a valid, highly utilized measure for assessing ADL impacts in patients with Friedreich ataxia. We provide evidence of the psychometric validity of the FARS-ADL in two cohorts of patients with spinocerebellar ataxia (SCA).
Methods: Using data from a cohort of real-world subjects with SCA (recruited at Massachusetts General Hospital [MGH]; n = 33) and a phase 3 trial of troriluzole in adults with SCA (NCT03701399 [Study 206]; n = 217), comprising a subset of patients with the SCA3 genotype (n = 89), the psychometric measurement properties and minimal change thresholds of the FARS-ADL were examined.
Int J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.
View Article and Find Full Text PDFJ Clin Neurol
January 2025
Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
Background And Purpose: This study was an open-label, dose-escalation, phase 1 clinical trial to determine the safety and dose of EN001 for patients with Duchenne muscular dystrophy (DMD). EN001, developed by ENCell, are allogeneic early-passage Wharton's jelly-derived mesenchymal stem cells that originate at the umbilical cord, with preclinical studies demonstrating their high therapeutic efficacy for DMD.
Methods: This phase 1 clinical trial explored the safety and tolerability of EN001 as a potential treatment option for patients with DMD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!