Objective: To investigate the role of α3β1 integrin and α/β-dystroglycan in protective effects of 1,25(OH)2D3 on podocytes in rats with adriamycin-induced nephropathy.
Methods: Sprague-Dawley rats were randomly divided into three groups: control group (NC), nephropathy group (NE), and nephropathy+1,25(OH)2D3 group (ND). Rats in NE and ND group were injected intravenously with adriamycin (0.1 mg/10 g body weight) to induce nephropathy, and those in ND group were then subcutaneously treated with 1,25(OH)2D3 for 8 weeks. Urinary protein level, number of urine podocytes, foot process width and glomerulosclerotic index were determined. Nephrin and podocin mRNA and protein expressions were determined by RT-PCR and western blot, respectively. Podocyte density and expressions of α3β1 integrin and α/β-dystroglycan (DG) were analyzed by immunohistochemistry and western blot, respectively.
Results: The increase in proteinuria, podocyturia and width of foot process in NE group were ameliorated after treatment with 1,25(OH)2D3 for 8 weeks. The glomerulosclerotic index was significantly decreased in ND group when compared with NE group. The podocyte density in ND group (10.3±1.64 cells/glomerulus) was significantly higher than that in NE group (8.43±1.75 cells/glomerulus) (p=0.008). 1,25(OH)2D3 treatment could significantly up-regulate the mRNA and protein expressions of nephrin and podocin, and the protein expressions of α3β1 integrin and α/β-DG.
Conclusion: The expressions of nephrin, podocin, α3β1 integrin and α/β-DG were decreased in rats with nephropathy. However, 1,25(OH)2D3 treatment could significantly up-regulate the expressions of nephrin, podocin, α3β1 integrin and α/β-DG proteins which might suppress podocyte detachment and podocytopenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2169/internalmedicine.49.4174 | DOI Listing |
Blood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Depeartment of Chemical and Biological Engineering, Colorado School of Mines; Quantitative Biosciences and Engineering, Colorado School of Mines;
Platelets are blood cells that play an integral role in hemostasis and the innate immune response. Platelet hyper- and hypoactivity have been implicated in metabolic disorders, increasing risk for both thrombosis and bleeding. Platelet activation and metabolism are tightly linked, with the numerous methods to measure the former but relatively few for the latter.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!