Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: to create a method for assessing physician performance and care outcomes that are adjusted for procedure acuity and patient comorbidity.
Design: between 2004 and 2008 surgical procedures performed by 10 surgeons were stratified into high-acuity procedures (HAPs) and low-acuity procedures (LAPs). Risk adjustment was made for comorbid conditions examined singly or in groups of 2 or more.
Setting: a tertiary care medical center.
Patients: a total of 2618 surgical patients.
Main Outcome Measures: performance measures included length of stay; return to operating room within 7 days of surgery; and the occurrence of mortality, hospital readmission, transfusion, and wound infection within 30 days of surgery.
Results: the transfusion rate was 2.7% and 40.6% for LAPs and HAPs, respectively. Wound infection rates were 1.4% for LAPs vs 14.1% for HAPs, while 30-day mortality rate was 0.3% and 1.6% for LAPs and HAPs, respectively. The mean (SD) hospital stay for LAPs was 2.1 (3.6) vs 10.5 (7.0) days for HAPs. Negative performance factors were significantly higher for patients who underwent HAPs and had comorbid conditions. Differences among surgeons significantly affect the incidence of negative performance indicators. Factors affecting performance measures were procedure acuity, the surgeon, and comorbidity, in order of decreasing significance. Surgeons were ranked low, middle, and high based on negative performance indicators.
Conclusions: performance measures following oncologic procedures were significantly affected by comorbid conditions and by procedure acuity. Although the latter most strongly affects quality and performance indicators, both should weigh heavily in physician comparisons. The incidence of negative performance indicators was also influenced by the individual surgeon. These data may serve as a tool to evaluate and improve physician performance and outcomes and to develop risk-adjusted benchmarks. Ultimately, reimbursement may be tied to quantifiable measures of physician and institutional performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859940 | PMC |
http://dx.doi.org/10.1001/archoto.2010.215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!