Cortical stimulation as an adjuvant to upper limb rehabilitation after stroke.

PM R

Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

Published: December 2010

Recovery of upper limb function after stroke remains a clinical challenge in rehabilitation. New insights into the role of activity-dependent motor recovery have guided clinicians to develop novel task-oriented therapies that are effective in reducing functional limitations in hand use after stroke. A number of brain-stimulation techniques have been examined as therapeutic adjuvants applied to enhance functional outcomes. Cortical stimulation with the use of either noninvasive techniques or implanted technology has shown some promise as an adjuvant therapy but has yet to be supported in well-designed clinical trials. In this article, we review the physiology of neural plasticity and of cortical stimulation. Laboratory studies and early clinical trials of repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and epidural cortical stimulation are reported. Cortical stimulation may have a role in facilitating motor recovery after stroke, but a better understanding of the physics of cortical stimulation, biological response to stimulation, effective stimulation protocols, and proper patient selection is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pmrj.2010.09.012DOI Listing

Publication Analysis

Top Keywords

cortical stimulation
24
stimulation
9
upper limb
8
motor recovery
8
clinical trials
8
cortical
6
stimulation adjuvant
4
adjuvant upper
4
limb rehabilitation
4
stroke
4

Similar Publications

Photic drive response in people with epilepsy: Exploring the interaction with background alpha rhythm.

Vision Res

January 2025

Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia. Electronic address:

Photic drive responses (PDRs) are used to explore cortical hyperexcitability. We quantified PDRs and interactions with the alpha rhythm in people with epilepsy (PwE). Fifteen PwE (mean age ± SD 47.

View Article and Find Full Text PDF

Exploration of the dynamics of otic capsule and intracochlear pressure: Numerical insights with experimental validation.

J Acoust Soc Am

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.

View Article and Find Full Text PDF

Purpose: Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats.

View Article and Find Full Text PDF

Restoration of independent walking ability is the primary objective of stroke rehabilitation; however, not all patients achieve this goal due to diverse impairments in the paretic lower limb and compensatory mechanisms that lead to an asymmetrical and mechanically inefficient gait. This investigation aimed to examine alterations in cortical activation in post-stroke patients while walking with a wearable two-channel functional electrical stimulation (FES) in comparison to walking without FES. This observational study was conducted to discern distinct activation patterns in 19 stroke patients during sessions with and without FES, while using functional near-infrared spectroscopy (fNIRS) to monitor changes in blood oxygen levels.

View Article and Find Full Text PDF

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!