Fruit development: new directions for an old pathway.

Curr Biol

Institute of Structural and Molecular Biology, the Centre for Systems Biology, C.H. Waddington Building, Edinburgh University, Edinburgh EH9 3JD, UK.

Published: December 2010

A recent study investigating the molecular mechanisms of seed pod shattering has shown that the basic helix-loop-helix (bHLH) proteins INDEHISCENT and ALCATRAZ appear to regulate fruit patterning through gibberellic acid (GA)-DELLA signalling, revealing a central role for bHLH family members in GA response specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2010.10.054DOI Listing

Publication Analysis

Top Keywords

fruit development
4
development directions
4
directions pathway
4
pathway study
4
study investigating
4
investigating molecular
4
molecular mechanisms
4
mechanisms seed
4
seed pod
4
pod shattering
4

Similar Publications

The increasing contamination of cereals by micromycetes and mycotoxins during malting still poses an unresolved food safety problem. This study characterises the potential of the novel, rapidly developing food production technology of Pulsed Electric Field (PEF) to reduce the viability of fungi and the production of mycotoxins during malting. Barley, artificially inoculated with four species, was treated by PEF with two different intensities and then malted using a standard Pilsner-type technology.

View Article and Find Full Text PDF

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).

View Article and Find Full Text PDF

Global Analysis of microRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Causing Apple Replant Disease.

J Fungi (Basel)

December 2024

State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.

This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in (), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways.

View Article and Find Full Text PDF

Diversity of Species Associated with Trunk Diseases of (Peach) in Northern China.

J Fungi (Basel)

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Peach () is widely cultivated in China, but fungal diseases, particularly Cytospora canker, significantly impact tree health, reducing fruit yield and economic value. This disease mainly weakens tree branches and trunks, sometimes leading to tree death. There are no updated studies on the diversity of species associated with peach Cytospora canker in northern China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!