Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Homeostatic scaling is a non-Hebbian form of neural plasticity that maintains neuronal excitability and informational content of synaptic arrays in the face of changes of network activity. Here, we demonstrate that homeostatic scaling is dependent on group I metabotropic glutamate receptor activation that is mediated by the immediate early gene Homer1a. Homer1a is transiently upregulated during increases in network activity and evokes agonist-independent signaling of group I mGluRs that scales down the expression of synaptic AMPA receptors. Homer1a effects are dynamic and play a role in the induction of scaling. Similar to mGluR-LTD, Homer1a-dependent scaling involves a reduction of tyrosine phosphorylation of GluA2 (GluR2), but is distinct in that it exploits a unique signaling property of group I mGluR to confer cell-wide, agonist-independent activation of the receptor. These studies reveal an elegant interplay of mechanisms that underlie Hebbian and non-Hebbian plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013614 | PMC |
http://dx.doi.org/10.1016/j.neuron.2010.11.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!