In vertebrates, embryonic structures present at the dorsal midline, prechordal plate, notochord, hypochord and floor plate share a common embryonic origin. In zebrafish, they derive from a pool of progenitors located within the embryonic shield at the onset of gastrulation. The molecular mechanisms responsible for the common development of these structures remain unknown. Based on their spatial and temporal expression, transcription factors of the Forkhead box A (FoxA) family appeared to be good candidates to play such a role. In agreement with this hypothesis, we found that simultaneous knockdown of FoxA2 and FoxA3 abolish the formation of all axial derivatives, while overexpression of these transcription factors strongly enlarges dorsal mesodermal territories. We establish that, in FoxA2-FoxA3 double morphants, precursors of axial tissues are correctly induced at early gastrula stage, but their dorsal midline identity is not maintained during development and we found that progenitors of these tissues are cell-autonomously re-specified to form muscle fibers as well as cells of the ventral neural tube. Our study provides the first example of a specific loss of all dorsal midline tissues and demonstrates that members of the FoxA family have redundant functions essential to maintain the axial identity of prechordal plate, notochord, floor plate and hypochord progenitors during gastrulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2010.12.018 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy.
View Article and Find Full Text PDFGenes Genomics
January 2025
Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
Background: Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression.
View Article and Find Full Text PDFPlant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFJ Exp Med
April 2025
Department of Immunology, Harvard Medical School, Boston, MA, USA.
Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!