Background: N-type Ca2+ channels (Ca(v)2.2) play an important role in the transmission of pain signals to the central nervous system. ω-Conotoxin (CTx)-MVIIA, also called ziconotide (Prialt®), effectively alleviates pain, without causing addiction, by blocking the pores of these channels. Unfortunately, CTx-MVIIA has a narrow therapeutic window and produces serious side effects due to the poor reversibility of its binding to the channel. It would thus be desirable to identify new analgesic blockers with binding characteristics that lead to fewer adverse side effects.
Results: Here we identify a new CTx, FVIA, from the Korean Conus Fulmen and describe its effects on pain responses and blood pressure. The inhibitory effect of CTx-FVIA on N-type Ca2+ channel currents was dose-dependent and similar to that of CTx-MVIIA. However, the two conopeptides exhibited markedly different degrees of reversibility after block. CTx-FVIA effectively and dose-dependently reduced nociceptive behavior in the formalin test and in neuropathic pain models, and reduced mechanical and thermal allodynia in the tail nerve injury rat model. CTx-FVIA (10 ng) also showed significant analgesic effects on writhing in mouse neurotransmitter- and cytokine-induced pain models, though it had no effect on acute thermal pain and interferon-γ induced pain. Interestingly, although both CTx-FVIA and CTx-MVIIA depressed arterial blood pressure immediately after administration, pressure recovered faster and to a greater degree after CTx-FVIA administration.
Conclusions: The analgesic potency of CTx-FVIA and its greater reversibility could represent advantages over CTx-MVIIA for the treatment of refractory pain and contribute to the design of an analgesic with high potency and low side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025903 | PMC |
http://dx.doi.org/10.1186/1744-8069-6-97 | DOI Listing |
Plant Cell Environ
January 2025
College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China.
The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.
View Article and Find Full Text PDFNature
January 2025
Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK.
Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.
View Article and Find Full Text PDFSci Adv
January 2025
Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!