Background Aims: Immunotherapy targeting MAGE-A3 in multiple myeloma (MM) could eradicate highly aggressive and proliferative clonal cell populations responsible for relapse. However, expression of many cancer-testis antigens, including MAGE-A3, can be heterogeneous, leading to the potential for tumor escape despite MAGE-A3-induced immunity. We hypothesized that a combination of the hypomethylating agent 5-azacitidine (5AC) and the histone deacetylase inhibitor (HDACi) MGCD0103 (MGC) could induce MAGE-A3 expression in MAGE-A3-negative MM, resulting in recognition and killing of MM cells by MAGE-A3-specific cytotoxic T lymphocytes (CTL).
Methods: Gene expression analyses of MAGE-A3 expression in primary MM patient samples at diagnosis and relapse were completed to identify populations that would benefit from MAGE-A3 immunotherapy. MM cell lines were treated with 5AC and MGC. Real-time polymerase chain reaction (PCR) and Western blotting were performed to assess MAGE-A3 RNA and protein levels, respectively. Chromium-release assays and interferon (IFN) secretion assays were employed to ascertain MAGE-A3 CTL specificity against treated targets.
Results: Gene expression analysis revealed that MAGE-A3 is expressed in MM patients at diagnosis (25%) and at relapse (49%). We observed de novo expression of MAGE-A3 RNA and protein in MAGE-A3-negative cell lines treated with 5AC. MGC treatment alone did not induce expression but sequential 5AC/MGC treatment led to enhanced expression and augmented recognition by MAGE-A3-specific CTL, as assessed by (51)Cr-release assays (P = 0.047) and enzyme-linked immunosorbent assay (ELISA) for IFN-γ secretion (P = 0.004).
Conclusions: MAGE-A3 is an attractive target for immunotherapy of MM and epigenetic modulation by 5AC, and MGC can induce MAGE-A3 expression and facilitate killing by MAGE-A3-specific CTL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633222 | PMC |
http://dx.doi.org/10.3109/14653249.2010.529893 | DOI Listing |
Front Oncol
November 2024
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
Bladder cancer is a significant health concern worldwide, necessitating effective diagnostic and monitoring strategies. Biomarkers play a crucial role in the early detection, prognosis, and treatment of this disease. This review explores the current landscape of bladder cancer biomarkers, including FDA-approved molecular biomarkers and emerging ones.
View Article and Find Full Text PDFChimeric antigen receptors (CAR) that mimic T cell receptors (TCR) on eliciting peptide-major histocompatibility complex (pMHC) specific T cell responses hold great promise in the development of immunotherapies against solid tumors, infections, and autoimmune diseases. However, broad applications of TCR-mimic (TCRm) CARs are hindered to date largely due to lack of a facile approach for the effective isolation of TCRm CARs. Here, we establish a highly efficient process for discovery of TCRm CARs from human naïve antibody repertories by combining recombinase-mediated large-diversity monoclonal library construction with T cell activation-based positive and negative screenings.
View Article and Find Full Text PDFSemin Hematol
October 2024
Multiple Myeloma Center of Excellence, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY USA; The Multiple Myeloma Research Foundation, Norwalk, CT. Electronic address:
Melanoma Antigen Genes (MAGE) are expressed in a broad range of cancers, including multiple myeloma. MAGE have been under investigation for more than 3 decades as targets for immune therapy, while in parallel, interrogation of their functions has revealed activities that may be particularly critical in multiple myeloma. MAGE-C1 is expressed in about 75% of newly diagnosed cases and this is maintained through the natural history of the disease.
View Article and Find Full Text PDFFront Immunol
October 2024
Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.
Cancers (Basel)
October 2024
Department of Biomedical Laboratory Science, Yonsei University, Wonju 26493, Republic of Korea.
Cancer causes over 10 million deaths annually worldwide and remains a significant global health challenge. This study investigated advanced immunotherapy strategies, focusing on mRNA vaccines that target tumor-specific antigens to activate the immune system. We developed a novel mRNA vaccine using O,O'-dimyristyl-N-lysyl aspartate (DMKD) to improve stability and phosphatidylserine (PS) to enhance antigen presentation to immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!