We describe a novel route for the conversion of hexagonal Sb(2)Te(3) nanoplates into nanorings driven by growth temperature in a simple solvothermal process. The transmission electron microscopy was employed to investigate systemically the morphology, size, crystallinity, and microstructure of the as-prepared products. The experiments indicated that the growth temperature had a great effect on the morphology of antimony telluride nanostructures. When the experiments were conducted at 200 °C, the hexagonal antimony telluride nanoplates were obtained. However, if the experiments were carried out at higher temperature of 230 °C, the hexagonal antimony telluride nanorings were achieved by dissolution of the inner part with a higher density of defects of the hexagonal nanoplates for the first time. A possible formation mechanism was proposed on the basis of experimental results and analysis. This work may open a new rational route for the synthesis of the hexagonal antimony telluride nanorings, which may have scientific and technological applications in various functional devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la103937f | DOI Listing |
Ultramicroscopy
December 2024
National Research University of Electron Technology (MIET), Zelenograd 124498, Moscow, Russia.
The structural studies of two-dimensional (2D) van der Waals heterostructures and understanding of their relationship with the orientation of crystalline substrates using transmission electron microscopy (TEM) presents a challenge in developing an easy-to-use plan-view specimen preparation technique. In this report, we introduce a simple approach for high-quality plan-view specimen preparation utilizing a dual beam system comprising focused ion beam and scanning electron microscopy. To protect the atomically thin 2D heterostructure during the preparation process, we employ an epoxy layer.
View Article and Find Full Text PDFIEEE Trans Instrum Meas
January 2024
National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA.
ACS Nano
September 2024
Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
The relentless miniaturization inherent in complementary metal-oxide semiconductor technology has created challenges at the interface of two-dimensional (2D) materials and metal electrodes. These challenges, predominantly stemming from metal-induced gap states (MIGS) and Schottky barrier heights (SBHs), critically impede device performance. This work introduces an innovative implementation of damage-free SbTe topological van der Waals (T-vdW) contacts, representing an ultimate contact electrode for 2D materials.
View Article and Find Full Text PDFInclusion of a phase change material such as germanium-antimony-telluride (GeSbTe or GST) enhances the performance of plasmonic metasurface absorbers (PMAs). One-dimensional (1-D) plasmonic metasurfaces (PMs) support the excitation of surface plasmon modes for the normal incidence of transverse magnetically (TM) polarized light. The 1-D PMAs absorb incident light because of their confinement in the groove region, which is possible because of the surface plasmon modes excited at the metal-dielectric interface.
View Article and Find Full Text PDFJ Vis Exp
May 2024
Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia;
Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!