We describe a novel route for the conversion of hexagonal Sb(2)Te(3) nanoplates into nanorings driven by growth temperature in a simple solvothermal process. The transmission electron microscopy was employed to investigate systemically the morphology, size, crystallinity, and microstructure of the as-prepared products. The experiments indicated that the growth temperature had a great effect on the morphology of antimony telluride nanostructures. When the experiments were conducted at 200 °C, the hexagonal antimony telluride nanoplates were obtained. However, if the experiments were carried out at higher temperature of 230 °C, the hexagonal antimony telluride nanorings were achieved by dissolution of the inner part with a higher density of defects of the hexagonal nanoplates for the first time. A possible formation mechanism was proposed on the basis of experimental results and analysis. This work may open a new rational route for the synthesis of the hexagonal antimony telluride nanorings, which may have scientific and technological applications in various functional devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la103937fDOI Listing

Publication Analysis

Top Keywords

antimony telluride
16
growth temperature
12
hexagonal antimony
12
conversion hexagonal
8
hexagonal sb2te3
8
sb2te3 nanoplates
8
nanoplates nanorings
8
nanorings driven
8
driven growth
8
°c hexagonal
8

Similar Publications

The structural studies of two-dimensional (2D) van der Waals heterostructures and understanding of their relationship with the orientation of crystalline substrates using transmission electron microscopy (TEM) presents a challenge in developing an easy-to-use plan-view specimen preparation technique. In this report, we introduce a simple approach for high-quality plan-view specimen preparation utilizing a dual beam system comprising focused ion beam and scanning electron microscopy. To protect the atomically thin 2D heterostructure during the preparation process, we employ an epoxy layer.

View Article and Find Full Text PDF
Article Synopsis
  • - The paper explores the quantum anomalous Hall (QAH) effect in a resistor made from Chromium-doped Bismuth Antimony Telluride, aimed at linking it with a programmable Josephson voltage standard (PJVS) without using a magnetic field.
  • - Precision measurements of the QAH resistance were conducted while applying a microwave signal to the PJVS, which enhances the accuracy of the resistance readings.
  • - The findings aim to enhance experimental setups for combining various quantum electrical standards into one cohesive system, which could lead to advancements in quantum technology.
View Article and Find Full Text PDF

Topological van der Waals Contact for Two-Dimensional Semiconductors.

ACS Nano

September 2024

Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.

The relentless miniaturization inherent in complementary metal-oxide semiconductor technology has created challenges at the interface of two-dimensional (2D) materials and metal electrodes. These challenges, predominantly stemming from metal-induced gap states (MIGS) and Schottky barrier heights (SBHs), critically impede device performance. This work introduces an innovative implementation of damage-free SbTe topological van der Waals (T-vdW) contacts, representing an ultimate contact electrode for 2D materials.

View Article and Find Full Text PDF

Inclusion of a phase change material such as germanium-antimony-telluride (GeSbTe or GST) enhances the performance of plasmonic metasurface absorbers (PMAs). One-dimensional (1-D) plasmonic metasurfaces (PMs) support the excitation of surface plasmon modes for the normal incidence of transverse magnetically (TM) polarized light. The 1-D PMAs absorb incident light because of their confinement in the groove region, which is possible because of the surface plasmon modes excited at the metal-dielectric interface.

View Article and Find Full Text PDF

Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!