We report an in situ surface X-ray diffraction study of liquid AuIn metal alloys in contact with zinc-blende InP (111)(B) substrates at elevated temperatures. We observe strong layering of the liquid metal alloy in the first three atomic layers in contact with the substrate. The first atomic layer of the alloy has a higher indium concentration than in bulk. In addition, in this first layer we find evidence for in-plane ordering at hollow sites, which could sterically hinder nucleation of zinc-blende InP. This can explain the typical formation of the wurtzite crystal structure in InP nanowires grown from AuIn metal particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl1023996 | DOI Listing |
BMC Cancer
January 2025
Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.
Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.
J Colloid Interface Sci
December 2024
Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).
View Article and Find Full Text PDFTalanta
April 2025
Thin Films and Materials Science Research Laboratory, Department of Physics, Dayanand Science College, Latur, Maharashtra, 413512, India. Electronic address:
In this study, we report the synthesis, optical characterization and ultra-sensitive ammonia gas sensing properties of Mg-doped ZnO cauliflower like nanostructures obtained via chemical spray pyrolysis technique. The morphological and structural properties of the prepared films were investigated by Field Emission Scanning electron microscope (FESEM) and X-ray diffraction (XRD). Gas sensing and optical characterizations were carried out using Keithley electrometer and Uv-Vis.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China.
Sci Rep
December 2024
Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!