Hepatocellular carcinoma (HCC) is one of the most common malignancies with a poor prognosis and limited therapeutic options that is often characterized by the expression of the tumor-associated antigen α-fetoprotein (AFP). CD4+ helper T cells are important in generating potent anticancer immunity as they prime and expand CD8+ T-cell memory and may also have direct antitumor activity. However, very little information is currently available about the relative frequency, immunodominance and peripheral versus intratumoral distribution of AFP-specific CD4+ T-cell responses in patients with HCC. We, therefore, analyzed AFP-specific CD4+ responses in blood and tumor tissue of patients with HCC by using overlapping peptides spanning the entire AFP protein and novel sensitive approaches such as antigen-specific upregulation of CD154. We found that AFP-specific CD4+ T-cell responses were not detectable in the peripheral blood ex vivo. However, after in vitro stimulation, AFP-specific CD4+ T-cell responses were detectable in a large fraction of patients targeting different previously unreported epitopes with no clear immunodominance. These results indicate that AFP-specific CD4+ T-cell responses are not completely deleted but only present at very low frequencies. Importantly, AFP-specific CD4+ T-cell responses were also rarely detectable in tumor tissue, suggesting that the relative absence of these cells in the circulation ex vivo is not due to a rapid accumulation to the tumor side. Taken together, these results suggest that the lack of sufficient CD4+ T-cell help, especially within the tumor tissue, may be one central mechanism responsible for the failure of AFP-specific immune responses to control HCC progression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.25866DOI Listing

Publication Analysis

Top Keywords

afp-specific cd4+
24
cd4+ t-cell
24
t-cell responses
20
tumor tissue
12
cd4+
9
responses
8
cd4+ responses
8
hepatocellular carcinoma
8
patients hcc
8
responses detectable
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!