The principal objective of the present study was to evaluate the antimetastatic activity of decursin and decursinol isolated from Angelica gigas. Decursin and decursinol inhibited the proliferation and invasion of CT-26 colon carcinoma cells. The expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in cells and the activities in the culture medium were also reduced by decursin and decursinol treatment. In CT-26 cells, the extracellular signal-regulated kinase (ERK) inhibitor inhibited cell proliferation, invasion and MMP-9 expression, and the c-Jun N-terminal kinase (JNK) inhibitor suppressed the expression of both MMPs, as well as cell proliferation and cell invasion. The phosphatidylinositol-3 kinase (PI3K) inhibitor reduced only the expression of MMP-2. In addition, the invasion of CT-26 cells was inhibited by the treatment with anti-MMP-9 antibody, rather than anti-MMP-2 antibody. These results indicate that MMP-9 expression via ERK and JNK plays a critical role for the invasion of CT26 cells. Decursin and decursinol downregulated ERK and JNK phosphorylation. Moreover, oral administration of decursin and decursinol reduced the formation of tumor nodules in the lungs and the increase in lung weight caused by CT-26 metastases. Therefore, both decursin and decursinol may be beneficial antimetastatic agents, targeting MMPs and their upstream signaling molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.3372 | DOI Listing |
Pharm Res
January 2025
Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA.
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extracts have been marketed as dietary supplements in the United States for memory health and pain management. We have recently reviewed the pharmacokinetics (PK) and first-pass hepatic metabolism of ingested AGN supplements in humans for the signature pyranocoumarins decursin (D, C 1x), decursinol angelate (DA, C ~ 10x) and their common botanical precursor and hepatic metabolite decursinol (DOH, C ~ 1000x).
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
November 2024
College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, Jilin, 133000, China.
While studies have shown that Angelica gigas Nakai (A. gigas) can alleviate ulcerative colitis in mice, the therapeutic role of its main active ingredient, decursin, is uncertain. Therefore, we aimed to investigate the protective effect and mechanism of decursin against inflammatory bowel disease (IBD) in vivo using mice.
View Article and Find Full Text PDFMany naturally derived compounds are currently used in oncotherapy. Besides official medicine, complementary and alternative medicine practices, including old herbal remedies, are widely used and accepted as additional tools in cancer treatment. Nakai (AGN), a medicinal herb in Asia, has roots historically used in medicine.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2024
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea.
Background: This study aims to explore the protective role of JB-V-60-a novel synthetic derivative of decur-sin-against lipopolysaccharide (LPS)-induced inflammation.
Methods: We examined the effects of JB-V-60 on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human pulmonary artery endothelial cells (HPAECs). Additionally, we assessed its effects on iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β in LPS-exposed mice.
Int J Mol Sci
September 2024
Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Republic of Korea.
Decursin, a coumarin isolated from Nakai, possesses anti-inflammatory and anti-cancer properties. However, the molecular mechanisms underlying its anti-cancer effects against human colorectal cancer (CRC) are unclear. Therefore, this study aimed to evaluate the biological activities of decursin in CRC in vitro and in vivo and to determine its underlying mechanism of action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!