Each day, the kidneys filter 180 L of blood plasma, equating to some 4,300 mmol of the major blood buffer, bicarbonate (HCO3-). The glomerular filtrate enters the lumen of the proximal tubule (PT), and the majority of filtered HCO3- is reclaimed along the early (S1) and convoluted (S2) portions of the PT in a manner coupled to the secretion of H+ into the lumen. The PT also uses the secreted H+ to titrate non-HCO3- buffers in the lumen, in the process creating "new HCO3-" for transport into the blood. Thus, the PT - along with more distal renal segments - is largely responsible for regulating plasma [HCO3-]. In this review we first focus on the milestone discoveries over the past 50+ years that define the mechanism and regulation of acid-base transport by the proximal tubule. Further on in the review, we will summarize research still in progress from our laboratory, work that addresses the problem of how the PT is able to finely adapt to acid-base disturbances by rapidly sensing changes in basolateral levels of HCO3- and CO2 (but not pH), and thereby to exert tight control over the acid-base composition of the blood plasma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699187 | PMC |
Nephrology (Carlton)
February 2025
Department of Quality Management, Tianjin Blood Center, Tianjin, China.
Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.
Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.
J Diabetes Res
January 2025
Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, Sydney, Australia.
Emerging evidence suggests cell exfoliation could be operating under the control of cell metabolism. It is unclear if there are associations between the concentration of exfoliated kidney proximal tubule cells (PTCs) in urine with glycemic control and complications. Our study is aimed at exploring this.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Nucleic acid medicine encompassing antisense oligonucleotides (ASOs) has garnered interest as a potential avenue for next-generation therapeutics. However, their therapeutic application has been constrained by challenges such as instability, off-target effects, delivery issues, and immunogenic responses. Furthermore, their practical utility in treating kidney diseases remains unrealized.
View Article and Find Full Text PDFDiabetes Metab J
January 2025
Diabetes Department of Integrated Chinese and Western Medicine, China National Center for Integrated Traditional Chinese and Western Medicine, China- Japan Friendship Hospital, Beijing, China.
Background: Diabetic kidney disease (DKD) is recognized as a significant complication of diabetes mellitus and categorized into glomerular DKDs and tubular DKDs, each governed by distinct pathological mechanisms and biomarkers.
Methods: Through the identification of common features observed in glomerular and tubular lesions in DKD, numerous differentially expressed gene were identified by the machine learning, single-cell transcriptome and mendelian randomization.
Results: The diagnostic markers versican (VCAN) was identified, offering supplementary options for clinical diagnosis.
Kidney Int
February 2025
Department of Pediatrics, The Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. Electronic address:
Sodium reabsorption is tightly coupled to calcium reabsorption in the proximal tubule via the action of the Na/H exchanger isoform 3 (NHE3). Poulsen et al. provide evidence of reduced proximal calcium reabsorption in kidney tubule-specific NHE3-deficient mice that is compensated distally, unaltered phosphate homeostasis, and NHE3 involvement in the hypocalciuric effect of thiazides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!