A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An exposure-response curve for copper excess and deficiency. | LitMetric

An exposure-response curve for copper excess and deficiency.

J Toxicol Environ Health B Crit Rev

Institute of Population Health, McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada.

Published: October 2010

AI Article Synopsis

  • * A study created a database assigning severity scores to health outcomes from high and low Cu intake, using a generalized linear model to analyze the impact of various factors like dose, duration, and species differences.
  • * The optimal daily intake of Cu was found to be 2.6 mg, which is higher than the current recommended level (0.9 mg) but lower than the upper limit (10 mg), offering a more nuanced view for risk managers about safe intake levels and potential health risks.

Article Abstract

There is a need to define exposure-response curves for both Cu excess and deficiency to assist in determining the acceptable range of oral intake. A comprehensive database has been developed where different health outcomes from elevated and deficient Cu intakes were assigned ordinal severity scores to create common measures of response. A generalized linear model for ordinal data was used to estimate the probability of response associated with dose, duration and severity. The model can account for differences in animal species, the exposure medium (drinking water and feed), age, sex, and solubility. Using this model, an optimal intake level of 2.6 mg Cu/d was determined. This value is higher than the current U.S. recommended dietary intake (RDI; 0.9 mg/d) that protects against toxicity from Cu deficiency. It is also lower than the current tolerable upper intake level (UL; 10 mg/d) that protects against toxicity from Cu excess. Compared to traditional risk assessment approaches, categorical regression can provide risk managers with more information, including a range of intake levels associated with different levels of severity and probability of response. To weigh the relative harms of deficiency and excess, it is important that the results be interpreted along with the available information on the nature of the responses that were assigned to each severity score.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10937404.2010.538657DOI Listing

Publication Analysis

Top Keywords

excess deficiency
8
probability response
8
intake level
8
mg/d protects
8
protects toxicity
8
intake
5
exposure-response curve
4
curve copper
4
excess
4
copper excess
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!