Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A field effect transistor (FET)-based immunosensor was developed for diabetes monitoring by detecting the concentrations of glycated hemoglobin (HbA1c) and hemoglobin (Hb). This immunosensor consists of a FET-based sensor chip and a disposable extended-gate electrode chip. The sensor chip was fabricated by standard CMOS process and was integrated with signal readout circuit. The disposable electrode chip, fabricated on polyester plastic board by Micro-Electro-Mechanical-Systems (MEMS) technique, was integrated with electrodes array and micro reaction pool. Biomolecules were immobilized on the electrode based on self-assembled monolayer and gold nanoparticles. Experimental results showed that the immunosensor achieved a linear response to HbA1c with the concentration from 4 to 24 μg/ml, and a linear response to Hb with the concentration from 60 to 180 μg/ml.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-010-9498-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!