Mapping the sequence of conformational changes underlying selectivity filter gating in the K(v)11.1 potassium channel.

Nat Struct Mol Biol

Mark Cowley Lidwill Research Program in Cardiac Electrophysiology, Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, New South Wales, Australia.

Published: January 2011

The potassium channel selectivity filter both discriminates between K(+) and sodium ions and contributes to gating of ion flow. Static structures of conducting (open) and nonconducting (inactivated) conformations of this filter are known; however, the sequence of protein rearrangements that connect these two states is not. We show that closure of the selectivity filter gate in the human K(v)11.1 K(+) channel (also known as hERG, for ether-a-go-go-related gene), a key regulator of the rhythm of the heartbeat, is initiated by K(+) exit, followed in sequence by conformational rearrangements of the pore domain outer helix, extracellular turret region, voltage sensor domain, intracellular domains and pore domain inner helix. In contrast to the simple wave-like sequence of events proposed for opening of ligand-gated ion channels, a complex spatial and temporal sequence of widespread domain motions connect the open and inactivated states of the K(v)11.1 K(+) channel.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.1966DOI Listing

Publication Analysis

Top Keywords

selectivity filter
12
sequence conformational
8
potassium channel
8
kv111 channel
8
pore domain
8
mapping sequence
4
conformational changes
4
changes underlying
4
underlying selectivity
4
filter
4

Similar Publications

Michael and Schiff-Base Reactions-Assisted Fluorescence Sensor Based on the MOF Nanosheet Microspheres for the Effective Discrimination and Detection of Hydroquinone and Catechol.

Anal Chem

January 2025

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

A novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.

View Article and Find Full Text PDF

Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes.

View Article and Find Full Text PDF

This paper presents a Regeneration filter for reducing near Salt-and-Pepper (nS&P) noise in images, designed for selective noise removal while simultaneously preserving structural details. Unlike conventional methods, the proposed filter eliminates the need for median or other filters, focusing exclusively on restoring noise-affected pixels through localized contextual analysis in the immediate surroundings. Our approach employs an iterative processing method, where additional iterations do not degrade the image quality achieved after the first filtration, even with high noise densities up to 97% spatial distribution.

View Article and Find Full Text PDF

Improved Intelligent Condition Monitoring with Diagnostic Indicator Selection.

Sensors (Basel)

December 2024

Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059, Krakow, Poland.

In this study, a predictive maintenance (PdM) system focused on feature selection for the detection and classification of simulated defects in wind turbine blades has been developed. Traditional PdM systems often rely on numerous, broadly chosen diagnostic indicators derived from vibration data, yet many of these features offer little added value and may even degrade model performance. General feature selection methods might not be suitable for PdM solutions, as information regarding observed faults is often misinterpreted or lost.

View Article and Find Full Text PDF

Fully Canonical Triple-Mode Filter with Source-Load Coupling for 5G Systems.

Sensors (Basel)

December 2024

Group of Applied Electromagnetics (GEA), Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

This work presents the design of a novel fully canonical triple-mode filter with source-load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion losses. The fully canonical topology allows for increasing the selectivity of the filter since the number of finite transmission zeros is equal to the order of the filter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!