Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens.

J Nutr

Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P R China.

Published: February 2011

To investigate the possible mechanism(s) by which dietary manganese (Mn) levels and sources modulate the expression of the manganese-containing superoxide dismutase (MnSOD) gene at both the transcriptional and translational levels, we used 432 8-d-old male broiler chicks in a 1 plus 4 × 2 design. Chickens were given either a diet without Mn supplementation [control (C)] or diets supplemented with 100 (optimal) or 200 (high) mg Mn/kg diet from inorganic Mn sulfate (I) or 3 organic complexes of Mn and amino acids with weak (W), moderate (M), or strong (S) chelation strength up to 21 d of age. Compared with C chicks, chicks fed Mn-supplemented diets had higher (P < 0.01) Mn concentrations, specificity protein 1 (Sp1) DNA-binding activities, MnSOD mRNA levels, MnSOD mRNA-binding protein (MnSOD-BP) RNA-binding activities, MnSOD protein concentrations, and MnSOD activities within heart tissue, but lower (P < 0.01) heart activating protein-2 (AP-2) DNA-binding activities. Chicks fed M diets had higher (P < 0.05) heart Mn concentrations, MnSOD mRNA levels, and MnSOD-BP RNA-binding activities compared with those fed the I and W diets and lower (P < 0.01) AP-2 DNA-binding activities than those fed other treatment diets. These results suggest that dietary Mn could modulate the expression of the MnSOD gene in broilers by altering Sp1 and AP-2 DNA-binding activities at the transcriptional level and enhancing MnSOD-BP RNA-binding activity at the translational level. Additionally, an organic Mn source with moderate chelation strength could be more effective than other Mn sources in activating MnSOD gene expression at both the transcriptional and translational levels.

Download full-text PDF

Source
http://dx.doi.org/10.3945/jn.110.126680DOI Listing

Publication Analysis

Top Keywords

dna-binding activities
16
mnsod gene
12
mnsod-bp rna-binding
12
ap-2 dna-binding
12
dietary manganese
8
expression manganese-containing
8
manganese-containing superoxide
8
superoxide dismutase
8
modulate expression
8
mnsod
8

Similar Publications

Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.

View Article and Find Full Text PDF

Investigating How Genomic Contexts Impact IS5 Transposition Within the Genome.

Microorganisms

December 2024

Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA.

Insertions of the transposable element IS5 into its target sites in response to stressful environmental conditions, DNA structures, and DNA-binding proteins are well studied, but how the genomic contexts near IS5's native loci impact its transpositions is largely unknown. Here, by examining the roles of all 11 copies of IS5 within the genome of strain BW25113 in transposition, we reveal that the most significant copy of IS5 is one nested within and oriented in the same direction as the gene, while two other copies of IS5 harboring point mutations are hardly transposed. Transposition activity is heavily reliant on the upstream promoter that drives IS5 transposase gene , with more transpositions resulting from greater promoter activity.

View Article and Find Full Text PDF

The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.

View Article and Find Full Text PDF

Structure Characterization of Zinc Finger Motif 1 and 2 of GLI1 DNA Binding Region.

Int J Mol Sci

December 2024

Scientific Platforms, Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA.

As a transcription factor, GLI1 plays an important role in cell cycle regulation, DNA replication, and DNA damage responses. The aberrant activation of GLI1 has been associated with cancers such as glioma, osteosarcoma, and rhabdomyosarcoma. The binding of GLI1 to a specific DNA sequence was achieved by five tandem zinc finger motifs (Zif motifs) on the N-terminal part of the molecule.

View Article and Find Full Text PDF

DNA polymerases from the hyperthermophilic Archaea have attracted considerable attention as PCR enzymes due to their high thermal stability and proofreading 3' → 5' exonuclease activity. This study is the first to report data concerning the purification and biochemical characteristics of the Tst DNA polymerase from . Both the wild type Tst(wt) DNA polymerase and its chimeric form containing the P36H substitution-which reduces the enzyme's affinity for the U-containing template and dUTP-and the DNA-binding domain Sso7d from were obtained and analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!