Although most available antidepressants increase monoaminergic neurotransmission, their therapeutic efficacy is likely mediated by longer-term molecular adaptations. To investigate the molecular changes induced by chronic antidepressant treatment we analysed proteomic changes in rat pre-frontal/frontal cortex and hippocampus after nortriptyline (NT) administration. A wide-scale analysis of protein expression was performed on the Flinders Sensitive Line (FSL), a genetically-selected rat model of depression, and the control Flinders Resistant Line (FRL). The effect of NT treatment was examined in a gene-environment interaction model, applying maternal separation (MS) to both strains. In the forced swim test, FSL rats were significantly more immobile than FRL animals, whereas NT treatment reduced immobility time. MS alone did not modify immobility time, but it impaired the response to NT in the FSL strain. In the proteomic analysis, in FSL rats NT treatment chiefly modulated cytoskeleton proteins and carbohydrate metabolism. In the FRL strain, changes influenced protein polymerization and intracellular transport. After MS, NT treatment mainly affected proteins in nucleotide metabolism in FSL rats and synaptic transmission and neurite morphogenesis pathways in FRL rats. When the effects of NT treatment and MS were compared between strains, carbohydrate metabolic pathways were predominantly modulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.euroneuro.2010.11.003 | DOI Listing |
Pharmacol Res Perspect
February 2025
Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.
The Flinders sensitive line (FSL) rat is an accepted rodent model for depression that presents with strong face, construct, and predictive validity, thereby making it suitable to investigate novel antidepressant mechanisms. Despite the translatability of this model, available literature on this model has not been reviewed for more than ten years. The PubMed, ScienceDirect and Web of Science databases were searched for relevant articles between 2013 and 2024, with keywords relating to the Flinders line rat, and all findings relevant to treatment naïve animals, included.
View Article and Find Full Text PDFPharmacol Res
January 2025
Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark. Electronic address:
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
August 2024
Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Hoffman Street, Potchefstroom, 2531, South Africa.
Background: Fluoxetine is present in breast milk, yet it is unclear to what extent it, or its active metabolite, norfluoxetine, reaches the brain of the infant and what the effects of such exposure on neurobiological processes are. We therefore aimed to quantify the concentration of passively administered fluoxetine and norfluoxetine in the whole brains of exposed Flinders sensitive line (FSL) offspring and establish their influence on serotonergic function and redox status.
Methods: Adult FSL dams received fluoxetine (10 mg/kg/day), or placebo for fourteen days, beginning on postpartum day 04.
Int J Mol Sci
July 2024
Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models.
View Article and Find Full Text PDFBiomed Eng Online
February 2024
Grupo GITA, Facultad de Minas, Universidad Nacional de Colombia, Carrera 80#65-223, 050001, Medellín, Colombia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!