The iron-pillared bentonite (Fe-Ben) was prepared by ion-exchange using the natural bentonite (GZ-Ben) from Gaozhou, China, at room temperature without calcination. Both Fe-Ben and GZ-Ben were characterized by X-ray diffraction, N(2) adsorption and Fourier transform infrared spectroscopy. The results show that the d(001) value and surface area of the bentonite material increased after iron pillaring. Fe-Ben adsorbed much more Rhodamine B (RhB) than GZ-Ben, which can be ascribed to the special surface properties and large surface area of Fe-Ben. The optimum pH value for the adsorption of RhB on Fe-Ben is 5.0. The adsorption of RhB onto Fe-Ben can be well described by the pseudo-second-order kinetic model and the intraparticle diffusion kinetic model. The adsorption isotherm of RhB onto Fe-Ben matches well with the Langmuir model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2010.11.110 | DOI Listing |
J Hazard Mater
February 2011
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
The iron-pillared bentonite (Fe-Ben) was prepared by ion-exchange using the natural bentonite (GZ-Ben) from Gaozhou, China, at room temperature without calcination. Both Fe-Ben and GZ-Ben were characterized by X-ray diffraction, N(2) adsorption and Fourier transform infrared spectroscopy. The results show that the d(001) value and surface area of the bentonite material increased after iron pillaring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!