In ten ovarian endometriomas of diameter exceeding 30 mm, managed by complete vaporization of the inner surface using plasma energy followed by cystectomy, we performed histologic evaluation of the depth of necrosis and the effectiveness of endometrial tissue ablation. We observed that plasma energy allows the ablation of endometrial tissue with minimal damage to the ovarian parenchyma, which suggests that this technique might be of particular interest for women with risk factors of postoperative ovarian reserve impairment, such as recurrent and bilateral endometriomas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2010.11.038DOI Listing

Publication Analysis

Top Keywords

plasma energy
12
endometrial tissue
8
vaporization ovarian
4
ovarian endometrioma
4
endometrioma plasma
4
energy histologic
4
histologic findings
4
findings pilot
4
pilot study
4
study ten
4

Similar Publications

Extended Time-Dependent Density Functional Theory for Multibody Densities.

Phys Rev Lett

December 2024

Key Laboratory for Laser Plasmas and School of Physics and Astronomy, and Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.

Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, Van Leeuwen theorem [Phys. Rev.

View Article and Find Full Text PDF

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

Purpose: Urinary cytokine changes may serve as biomarkers to assess treatment outcomes for interstitial cystitis/bladder pain syndrome (IC/BPS). This study analyzed the changes in urinary cytokines following various bladder therapies and explored their clinical significance in therapeutic mechanisms.

Methods: A total of 122 patients with IC/BPS treated with platelet-rich plasma (PRP), botulinum toxin-A (BoTN-A), hyaluronic acid (HA), or low-energy shock wave (LESW) were evaluated.

View Article and Find Full Text PDF

Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).

View Article and Find Full Text PDF

Realizing a 3C Fast-Charging Practical Sodium Pouch Cell.

Angew Chem Int Ed Engl

January 2025

Beihang University, 37 Xue Yuan Road, Hai Dian District, 100191, Beijing, CHINA.

Sodium-ion batteries (SIBs), endowed with relatively small Stokes radius and low desolvation energy for Na+, are reckoned as a promising candidate for fast-charging endeavors. However, the C-rate charging capability of practical energy-dense sodium-ion pouch cells is currently limited to ≤1C, due to the high propensity for detrimental metallic Na plating on the hard carbon (HC) anode at elevated rates. Here, an ampere-hour-level sodium-ion pouch cell capable of 3C charging is successfully developed via phosphorus (P)-sulfur (S) interphase chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!