Recently, we have demonstrated that serine protease tissue kallikrein (TK) can protect cortical neurons against ischemia-acidosis/reperfusion-induced injury, and that this effect might be mediated by acid-sensing ion channels (ASICs). However, little is known about how TK regulates the function of ASICs. Here we provided evidence that the regulation of ASIC1a function by TK was probably correlated with its cleavage. High concentration of TK (3μM) partially cleaved the extracellular loop of ASIC1a, followed by a marked decrease of LDH release and an increase of cell survival at pH 6.2. Pretreatment with a protease inhibitor aprotinin inhibited the cleavage of ASIC1a and prevented functional regulation by TK. However, the cleavage of ASIC2a, which was not functionally modified by TK, was not observed. Therefore, we propose that the limited proteolysis of extracellular loop within ASIC1a might be one of the potential regulatory mechanisms of ASIC1a function by TK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2010.12.023 | DOI Listing |
Biomolecules
January 2025
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.
Electrochemiluminescence (ECL) analysis stands out among various analytical methods due to its exceptional sensitivity and accuracy. However, the poor solubility of most ECL probes limits their effectiveness in aqueous environments. To address this challenge, we developed a water-soluble anion-π ECL luminophore, DPBC-OTS.
View Article and Find Full Text PDFMol Ecol
January 2025
Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA.
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
The sensation of sng (pronounced/səŋ/, the Romanization form of or soreness in Taiwanese Southern Min) associated with a composite of unique sensations, is a novel phenotype for acupoint stimulation. It is perceived by test participants but also by experienced practitioners as a sensation of "taking the bait" (by fish when fishing), a characteristic heavy and tight sensation from the needle. Here, we propose that sng is a powerful biomarker for associated with successful manual acupuncture.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA. Electronic address:
Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!