Volatile compounds (VCs) are produced by all microorganisms as part of their normal metabolism. The aim of this study was to determine whether bacterial VC profiles could be used to discriminate between selected bacterial species and strains in vitro. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) was used to quantify the concentration of 23 microbial VCs within the head-space of various bacterial monocultures, during both the logarithmic and stationary growth phases. In comparison with existing techniques, SIFT-MS enables quantitative, high throughput, real-time head-space analysis to be performed, without need for sample preparation. The results show that most VCs were produced by >1 bacterial species or strain, and some were produced by all strains tested. Multivariate analysis using similarity matrices, cluster analysis and multidimensional scaling (MDS) was used to determine whether there was a characteristic VC profile at either the species or strain level. Significant discrimination of all bacterial species and strains was achieved by analysing the VC profiles, and the relative similarity of VC profiles could be differentiated in 2 or 3 dimensional space. This study has shown that there are significant differences in the volatile profiles obtained from various bacterial monocultures grown in vitro, and that the analysis techniques herein employed have the potential to differentiate samples at the strain level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2010.12.001 | DOI Listing |
Nat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Key Laboratory of Exploration and Utilization of Aquatic genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. Electronic address:
Frog virus 3-like ranaviruses (FV3-like viruses), particularly FV3 (Frog virus 3), represent typical species within the genus Ranavirus, primarily infecting amphibians and reptiles, thereby posing serious threats to aquaculture and biodiversity conservation. We designed a pair of universal primers and a probe targeting the conserved region of the major capsid protein (MCP) genes of FV3-like viruses. By integrating recombinase-aided amplification (RAA) with lateral flow dipstick (LFD) technology and real-time fluorescence (RF) modification, we established RAA-LFD and RF-RAA assays.
View Article and Find Full Text PDFViruses
January 2025
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), 25124 Brescia, Italy.
The European subtype of tick-borne encephalitis virus (TBEV-Eur; species , family ) was the only tick-borne flavivirus present in central Europe known to cause neurologic disease in humans and several animal species. Here, we report a tick-borne flavivirus isolated from Alpine chamois () with encephalitis and attached ticks, present over a wide area in the Alps. Cases were detected in 2017 in Salzburg, Austria, and 2023 in Lombardy and Piedmont, Italy.
View Article and Find Full Text PDFViruses
January 2025
School of Medical, Molecular and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.
is a terrestrial orchid endemic to southwestern Australia. The virus status of has not been studied. Eighty-three samples from 16 populations were collected, and sequencing was used to identify RNA viruses from them.
View Article and Find Full Text PDFViruses
January 2025
Département de Virologie, Institut Pasteur de Dakar, Dakar BP 220, Senegal.
Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!