The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described "heavy rafts" or non-raft membrane. Our data show that only Csk targeted into "classical" raft but not to "heavy raft" or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2010.12.003 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Electronic address:
Gastrointestinal T cells (GI-T) play a critical role in mucosal immunity, balancing tolerance and pathogen defence. T cells recognize antigens via T cell receptors (TCRs). Next-generation sequencing (NGS) is utilized to analyse TCR repertoires in contexts such as health, haematological diseases, autoimmunity, and inflammation.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA.
Background: Reovirus (RV) is an oncolytic virus with natural tropism for cancer cells. We previously showed that RV administration in multiple myeloma (MM) patients was safe, but disease control associated with viral replication in the cancer cells was not observed. The combination with proteasome inhibitors (PIs) has shown to enhance RV therapeutic activity, but the mechanisms of action have not been fully elucidated.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
Dipeptidase 1 (DPEP1), initially identified as a renal membrane enzyme in mature human kidneys, plays a pivotal role in various cellular processes. It facilitates the exchange of materials and signal transduction across cell membranes, contributing significantly to dipeptide hydrolysis, glucose and lipid metabolism, immune inflammation, and ferroptosis, among other cellular functions. Extensive research has delineated the complex role of DPEP1 in oncogenesis and tumor progression, with its influence being context dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!